scholarly journals Shear Behavior of Corrugated Steel Webs in H Shape Bridge Girders

2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Qi Cao ◽  
Haibo Jiang ◽  
Haohan Wang

In bridge engineering, girders with corrugated steel webs have shown good mechanical properties. With the promotion of composite bridge with corrugated steel webs, in particular steel-concrete composite girder bridge with corrugated steel webs, it is necessary to study the shear performance and buckling of the corrugated webs. In this research, by conducting experiment incorporated with finite element analysis, the stability of H shape beam welded with corrugated webs was tested and three failure modes were observed. Structural data including load-deflection, load-strain, and shear capacity of tested beam specimens were collected and compared with FEM analytical results by ANSYS software. The effects of web thickness, corrugation, and stiffening on shear capacity of corrugated webs were further discussed.

2014 ◽  
Vol 81 (11) ◽  
Author(s):  
Xiaofeng Chen ◽  
Bin Chen

Cells are subjected to cyclic loads under physiological conditions, which regulate cellular structures and functions. Recently, it was demonstrated that cells on substrates reoriented nearly perpendicular to the stretch direction in response to uni-axial cyclic stretches. Though various theories were proposed to explain this observation, the underlying mechanism, especially at the molecular level, is still elusive. To provide insights into this intriguing observation, we employ a coupled finite element analysis (FEA) and Monte Carlo method to investigate the stability of a cluster of slip bonds upon cyclic loads. Our simulation results indicate that the cluster can become unstable upon cyclic loads and there exist two characteristic failure modes: gradual sliding with a relatively long lifetime versus catastrophic failure with a relatively short lifetime. We also find that the lifetime of the bond cluster, in many cases, decreases with increasing stretch amplitude and also decreases with increasing cyclic frequency, which appears to saturate at high cyclic frequencies. These results are consistent with the experimental reports. This work suggests the possible role of slip bonds in cellular reorientation upon cyclic stretch.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yuantian Sun ◽  
Junfei Zhang ◽  
Yunchao Tang ◽  
Yufei Wang ◽  
Junbo Sun ◽  
...  

In this research, the plate embedded parts and grooved embedded parts reinforced concrete structures were investigated. Two types of plate embedded parts and three types of grooved embedded parts experienced coating treatment to enable sustainable function. Later, the ultimate failure capacity by bending experiments was conducted and compared with the theoretically calculated results. Moreover, three grooved embedded parts were simulated by ABAQUS to compare the results with the experimental exploration results, which was in close agreement with the theoretically calculated results and finite element analysis results. The result indicated that the failure modes of the embedded specimens under the five working conditions are all concrete vertebral failure. The plate-type embedded components were proved to exhibit higher ultimate bearing capacity than the grooved embedded parts. Moreover, the flexural and shear capacity of these five types of embedded parts has not been fully developed. The ultimate flexural and shear capacity of these five types of embedded parts could be further explored by adjusting the higher concrete grade.


2014 ◽  
Vol 1035 ◽  
pp. 212-218
Author(s):  
Qi You Cheng ◽  
Jian Ping Huang ◽  
Ai Min Ling ◽  
Zhi Zhuang Feng

Aerospace applications of composites involve components that are relatively thin plate or shell like structures, thus requiring the consideration of buckling as one of the many possible failure modes. To study the effect of the resin volume fraction on stability of composites, a finite element method based on micromechanics and classical lamination theory has been established to compute buckling loads of simply supported symmetric laminated composite plates subjected to the load of in-plane axial compress and shear load, respectively. The analysis procedure includes a Micromechanical finite element analysis that predicts the elastic modulus of lamina and a finite element linear buckling analysis that predicts buckling load of the composite plates. Three kinds of resin volume fraction that are equal to 44 percent, 47 percent, and 50 percent respectively are considered. The results show that the resin volume fraction has obvious influence on the stability of composite plate. The plate exhibits a relatively large increase in buckling load, about 12 percent, when the resin volume fraction increases by 3 percent. It is finds that the bending stiffness that has an obvious influence on the stability is an incremental function of elastic modulus and cubic thickness. The elastic modulus will be decreased slightly with the increase of resin volume fraction. However, the thickness of the plates is proportional to resin volume fraction.


2012 ◽  
Vol 166-169 ◽  
pp. 1404-1415
Author(s):  
Zheng Ran Lu ◽  
Xiao Min Sui ◽  
Zhi Hua Chen

Through advanced non-linear finite element models in different geometric parameters that considering the semi-rigid character of the couplers, the critical loads and failure modes of many fastener steel tube full hall formwork supports (FFS) with and without bridging were evaluated. Thirteen FFS specimens were tested to failure in order to examine the stability behavior and failure modes of them. The finite element analysis (FEA) results were well consistent with those of the test what could prove its validity. On the basis of FEA and experimental research, simplified models and corresponding calculation formulas were established for the FFS under uniform load through choosing different buckling modes, which were verified by the experimental and analytical results and turned out to be accurate enough in predicting the strength. The simplified models presented here considering the semi-rigid character of right-angle coupler, effect of adjacent horizontal tube which provided a very useful reference for the industry as well as academia for design and future research.


2012 ◽  
Vol 226-228 ◽  
pp. 1232-1235
Author(s):  
Chun Gang Wang ◽  
Ping Ma ◽  
Dai Jun Song ◽  
Xin Yong Yu

The stability bearing capacity of axially compressive loaded fixed-ended channels with complex edge stiffeners were analyzed by direct strength method in this paper. A total of 292 examples with different parameters were selected to be studied by nonlinear finite element analysis. As the members with fix-ends, the failure modes include local and flexural-torsional interactive buckling, distortional and flexural-torsional interactive buckling. The revised direct strength method was put forward. After revise, the formula is in good agreement with experimental results. It is shown that direct strength method is valid for predicting the stability capacity of axially loaded fixed-ended channel columns with complex edge stiffeners. We suggest using the DSM3 to calculate the cold-formed thin-walled steel fixed-ended channels with complex edge stiffeners under axial compressive load.


2016 ◽  
Vol 691 ◽  
pp. 96-107
Author(s):  
Tomas J. Zivner ◽  
Rudolf B. Aroch ◽  
Michal M. Fabry

This paper deals with the slab concreting sequence and its influence on a composite steel and concrete continuous highway girder bridge. The bridge has a symmetrical composite two-girder structure with three spans of 60 m, 80 m, 60 m (i.e. a total length between abutments of 200.0 m). The horizontal alignment is straight. The top face of the deck is flat. The bridge is straight. The transverse cross-section of the slab is symmetrical with respect to the axis of the bridge. The total slab width is 12 m. The slab thickness varies from 0.4 m on main girders to 0.25 m at its free edges and 0.3075 m at its axis of symmetry. The center-to-center spacing between main girders is 7 m and the slab cantilever on either side is 2.5 m long. Every main girder has a constant depth of 2800 mm and the thicknesses of the upper and lower flanges are variable. The lower flange is 1200 mm wide whereas the upper flange is 1000 mm wide. The two main girders have transverse bracing at abutments and at internal supports and at regular intervals in every span. The material of concrete slab is C35/45 and of steel members S355. The on-site pouring of the concrete slab segments is performed by casting them in a selected order and is done after the launching of the steel two girder bridge. The paper presents several concreting sequences and their influence on the normal stresses and deflections of the composite bridge girder.


2020 ◽  
pp. 136943322098166
Author(s):  
Shuhao Yin ◽  
Bin Rong ◽  
Lei Wang ◽  
Yiliang Sun ◽  
Wuchen Zhang ◽  
...  

This paper studies the shear performance of the connection with the external stiffening ring between the square steel tubular column and unequal-depth steel beams. Two specimens of interior column connections were tested under low cyclic loading. The deformation characteristics and failure modes exhibited by the test phenomena can be summarized as: (1) two specimens all exhibited shear deformation in steel tube web of the panel zone and (2) weld fracture in the panel zone and plastic hinge failure at beam end were observed. Besides, load-displacement behaviors and strain distributions have been also discussed. The nonlinear finite element models were developed to verify the test results. Comparative analyses of the bearing capacity, failure mode, and load-paths between the equal-depth and unequal-depth beam models have been carried out.


2021 ◽  
Vol 11 (9) ◽  
pp. 3770
Author(s):  
Monica Tatarciuc ◽  
George Alexandru Maftei ◽  
Anca Vitalariu ◽  
Ionut Luchian ◽  
Ioana Martu ◽  
...  

Inlay-retained dental bridges can be a viable minimally invasive alternative when patients reject the idea of implant therapy or conventional retained full-coverage fixed dental prostheses, which require more tooth preparation. Inlay-retained dental bridges are indicated in patients with good oral hygiene, low susceptibility to caries, and a minimum coronal tooth height of 5 mm. The present study aims to evaluate, through the finite element method (FEM), the stability of these types of dental bridges and the stresses on the supporting teeth, under the action of masticatory forces. The analysis revealed the distribution of the load on the bridge elements and on the retainers, highlighting the areas of maximum pressure. The results of our study demonstrate that the stress determined by the loading force cannot cause damage to the prosthetic device or to abutment teeth. Thus, it can be considered an optimal economical solution for treating class III Kennedy edentation in young patients or as a provisional pre-implant rehabilitation option. However, special attention must be paid to its design, especially in the connection area between the bridge elements, because the connectors and the retainers represent the weakest parts.


2021 ◽  
Vol 16 (2-3) ◽  
pp. 61-74
Author(s):  
Sahar Ghasemi ◽  
Amir Mirmiran ◽  
Yulin Xiao ◽  
Kevin Mackie

A super lightweight deck can enhance load rating and functionality of a bridge, especially those identified as structurally deficient. This study was aimed to develop and experimentally validate a novel bridge deck as an ultra-lightweight low-profile waffle slab of ultra-high-performance concrete (UHPC) with either carbon fiber reinforced polymer (CFRP) or high strength steel (HSS) reinforcement. The proposed system lends itself to accelerated bridge construction, rapid deck replacement in bridges with load restrictions, and bridge widening applications without the need to replace girders. Performance and failure modes of the proposed deck were initially assessed through extensive lab experiments and finite element analysis, which together confirmed that the proposed deck panel meets the AASHTO LRFD requirements. The proposed deck system is not susceptible to punching shear of its thin slab and fails in a rather ductile manner. To evaluate its long-term performance, the system was further tested under the dynamic impact of wheel load at the Accelerated Pavement Testing (APT) facility of the Florida Department of Transportation using a Heavy Vehicle Simulator (HVS).


2021 ◽  
Vol 11 (2) ◽  
pp. 506
Author(s):  
Sun-Jin Han ◽  
Inwook Heo ◽  
Jae-Hyun Kim ◽  
Kang Su Kim ◽  
Young-Hun Oh

In this study, experiments and numerical analyses were carried out to examine the flexural and shear performance of a double composite wall (DCW) manufactured using a precast concrete (PC) method. One flexural specimen and three shear specimens were fabricated, and the effect of the bolts used for the assembly of the PC panels on the shear strength of the DCW was investigated. The failure mode, flexural and shear behavior, and composite behavior of the PC panel and cast-in-place (CIP) concrete were analyzed in detail, and the behavioral characteristics of the DCW were clearly identified by comparing the results of tests with those obtained from a non-linear flexural analysis and finite element analysis. Based on the test and analysis results, this study proposed a practical equation for reasonably estimating the shear strength of a DCW section composed of PC, CIP concrete, and bolts utilizing the current code equations.


Sign in / Sign up

Export Citation Format

Share Document