scholarly journals Assembly Line Productivity Assessment by Comparing Optimization-Simulation Algorithms of Trajectory Planning for Industrial Robots

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Francisco Rubio ◽  
Carlos Llopis-Albert ◽  
Francisco Valero ◽  
Josep Lluís Suñer

In this paper an analysis of productivity will be carried out from the resolution of the problem of trajectory planning of industrial robots. The analysis entails economic considerations, thus overcoming some limitations of the existing literature. Two methodologies based on optimization-simulation procedures are compared to calculate the time needed to perform an industrial robot task. The simulation methodology relies on the use of robotics and automation software called GRASP. The optimization methodology developed in this work is based on the kinematics and the dynamics of industrial robots. It allows us to pose a multiobjective optimization problem to assess the trade-offs between the economic variables by means of the Pareto fronts. The comparison is carried out for different examples and from a multidisciplinary point of view, thus, to determine the impact of using each method. Results have shown the opportunity costs of non using the methodology with optimized time trajectories. Furthermore, it allows companies to stay competitive because of the quick adaptation to rapidly changing markets.

Robotica ◽  
2014 ◽  
Vol 33 (3) ◽  
pp. 669-683 ◽  
Author(s):  
Fares J. Abu-Dakka ◽  
Francisco J. Valero ◽  
Jose Luis Suñer ◽  
Vicente Mata

SUMMARYThis paper presents a new genetic algorithm methodology to solve the trajectory planning problem. This methodology can obtain smooth trajectories for industrial robots in complex environments using a direct method. The algorithm simultaneously creates a collision-free trajectory between initial and final configurations as the robot moves. The presented method deals with the uncertainties associated with the unknown kinematic properties of intermediate via points since they are generated as the algorithm evolves looking for the solution. Additionally, the objective of this algorithm is to minimize the trajectory time, which guides the robot motion. The method has been applied successfully to the PUMA 560 robotic system. Four operational parameters (execution time, computational time, end-effector distance traveled, and significant points distance traveled) have been computed to study and analyze the algorithm efficiency. The experimental results show that the proposed optimization algorithm for the trajectory planning problem of an industrial robot is feasible.


Author(s):  
A. M. Romanov

A review of robotic systems is presented. The paper analyzes applied hardware and software solutions and summarizes the most common block diagrams of control systems. The analysis of approaches to control systems scaling, the use of intelligent control, achieving fault tolerance, reducing the weight and size of control system elements belonging to various classes of robotic systems is carried out. The goal of the review is finding common approaches used in various areas of robotics to build on their basis a uniform methodology for designing scalable intelligent control systems for robots with a given level of fault tolerance on a unified component base. This part is dedicated to industrial robotics. The following conclusions are made: scaling in industrial robotics is achieved through the use of the modular control systems and unification of main components; multiple industrial robot interaction is organized using centralized global planning or the use of previously simulated control programs, eliminating possible collisions in working area; intellectual technologies in industrial robotics are used primarily at the strategic level of the control system which is usually non-real time, and in some cases even implemented as a remote cloud service; from the point of view of ensuring fault tolerance, the industrial robots developers are primarily focused on the early prediction of faults and the planned decommissioning of the robots, and are not on highly-avaliability in case of failures; industrial robotics does not impose serious requirements on the dimensions and weight of the control devices.


2019 ◽  
Vol 8 (2) ◽  
pp. 52 ◽  
Author(s):  
Martin Bielik ◽  
Sven Schneider ◽  
Saskia Kuliga ◽  
Danielle Griego ◽  
Varun Ojha ◽  
...  

Urban planners are often challenged with the task of developing design solutions which must meet multiple, and often contradictory, criteria. In this paper, we investigated the trade-offs between social, psychological, and energy potential of the fundamental elements of urban form: the street network and the building massing. Since formal methods to evaluate urban form from the psychological and social point of view are not readily available, we developed a methodological framework to quantify these criteria as the first contribution in this paper. To evaluate the psychological potential, we conducted a three-tiered empirical study starting from real world environments and then abstracting them to virtual environments. In each context, the implicit (physiological) response and explicit (subjective) response of pedestrians were measured. To quantify the social potential, we developed a street network centrality-based measure of social accessibility. For the energy potential, we created an energy model to analyze the impact of pure geometric form on the energy demand of the building stock. The second contribution of this work is a method to identify distinct clusters of urban form and, for each, explore the trade-offs between the select design criteria. We applied this method to two case studies identifying nine types of urban form and their respective potential trade-offs, which are directly applicable for the assessment of strategic decisions regarding urban form during the early planning stages.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 769
Author(s):  
Carlos Llopis-Albert ◽  
Francisco Rubio ◽  
Francisco Valero

This research aims to design an efficient algorithm leading to an improvement of productivity by posing a multi-objective optimization, in which both the time consumed to carry out scheduled tasks and the associated costs of the autonomous industrial system are minimized. The algorithm proposed models the kinematics and dynamics of the industrial robot, provides collision-free trajectories, allows to constrain the energy consumed and meets the physical characteristics of the robot (i.e., restriction on torque, jerks and power in all driving motors). Additionally, the trajectory tracking accuracy is improved using an adaptive fuzzy sliding mode control (AFSMC), which allows compensating for parametric uncertainties, bounded external disturbances and constraint uncertainties. Therefore, the system stability and robustness are enhanced; thus, overcoming some of the limitations of the traditional proportional-integral-derivative (PID) controllers. The trade-offs among the economic issues related to the assembly line and the optimal time trajectory of the desired motion are analyzed using Pareto fronts. The technique is tested in different examples for a six-degrees-of-freedom (DOF) robot system. Results have proved how the use of this methodology enhances the performance and reliability of assembly lines.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Guang Jin ◽  
Shuai Ma ◽  
Zhenghui Li

This paper studies the kinematic dynamic simulation modeling of industrial robots in the Industry 4.0 environment and guides the kinematic dynamic simulation modeling of industrial robots in the Industry 4.0 environment in the context of the research. To address the problem that each parameter error has different degrees of influence on the end position error, a method is proposed to calculate the influence weight of each parameter error on the end position error based on the MD-H error model. The error model is established based on the MD-H method and the principle of differential transformation, and then the function of uniform variation of six joint angles with time t is constructed to ensure that each linkage geometric parameter is involved in the motion causing error accumulation. Through the analysis of the robot marking process, the inverse solution is optimized for multiple solutions, and a unique engineering solution is obtained. Linear interpolation, parabolic interpolation, polynomial interpolation, and spline curve interpolation are performed on the results after multisolution optimization in the joint angle, and the pros and cons of various interpolation results are analyzed. The trajectory planning and simulation of industrial robots in the Industry 4.0 environment are carried out by using a special toolbox. The advantages and disadvantages of the two planning methods are compared, and the joint space trajectory planning method is selected to study the planning of its third and fifth polynomials. The kinetic characteristics of the robot were simulated and tested by experimental methods, and the reliability of the simulation results of the kinetic characteristics was verified. The kinematic solutions of industrial robots and the results of multisolution optimization are simulated. The methods, theories, and strategies studied in this paper are slightly modified to provide theoretical and practical support for another dynamic simulation modeling of industrial robot kinematics with various geometries.


Author(s):  
Mingyu Gao ◽  
Da Chen ◽  
Yuxiang Yang ◽  
Zhiwei He

Purpose – The purpose of this paper is to propose a new trajectory planning algorithm for industrial robots, which can let the robots move through a desired spatial trajectory, avoid colliding with other objects and achieve accurate movements. Trajectory planning algorithms are the soul of motion control of industrial robots. A predefined space trajectory can let the robot move through the desired spatial coordinates, avoid colliding with other objects and achieve accurate movements. Design/methodology/approach – The mathematical expressions of the proposed algorithm are deduced. The speed control, position control and orientation control strategies are realized and verified with simulations, and then implemented on a six degrees of freedom (6-DOF) industrial robot platform. Findings – A fixed-distance trajectory planning algorithm based on Cartesian coordinates was presented. The linear trajectory, circular trajectory, helical trajectory and parabolic trajectory in Cartesian coordinates were implemented on the 6-DOF industrial robot. Originality/value – A simple and efficient algorithm is proposed. Enrich the kind of trajectory which the industrial robot can realize. In addition, the industrial robot can move more concisely, smoothly and precisely.


Author(s):  
Rudolf Jánoš ◽  
Dobiaš Dominik

Urgency of the research. One of the top trends in the field of mechanical engineering is automation. An inherent part of automation in today's businesses is industrial robots of various categories. In today's industrial production, human and robot are usually separated from each other in order to avoid potential collisions. Continuous development and the growing trend of robotics, in order to increase competitiveness, abandons this individual and isolated robot deployment and prevents group-building of human-robot workplaces. Target setting. The reason for designing industrial robots with capacity around 5-10kg according to human anatomy is that the transition from semi-automated production (operating lines controlled by operators) to fully automated production requires industrial robots that have dimensions similar to human anatomy. Actual scientific researches and issues analysis. The current production of robot devices reaches a high technical level, which is further enhanced by the continued development of their subsystems, but also by the upgrading of functional principles and elements that are involved in the architecture and morphology of these devices. The research objective. To what extent is it possible for the work process to be mechanized or automated depends also on the level of development of the used equipment. In today's development stage, design of automated device is also automated. The statement of basic materials: From the point of view of approaching the design of robots systems means a common sign is a mechatronic approach. Robots technical devices are a typical product with all the features of mechatronics (linking knowledge of engineering, management methods and artificial intelligence). This becomes the starting point for the elaboration of the methods of designing robots at all. Conclusions. This article focuses on the design of the robotics devices, whose main task is to perform the assembly. The future of deploying human-robot collaboration has enormous boundaries and many variables that still need to be addressed. It is important to remember that this technology is not about replacing people with robots. Rather, it is about using robust human features and robot strengths to achieve a new level of efficiency and productivity that could not be achieved by self-employment.


Author(s):  
Matthew Story ◽  
Phil Webb ◽  
Sarah R. Fletcher ◽  
Gilbert Tang ◽  
Cyril Jaksic ◽  
...  

AbstractCurrent guidelines for Human-Robot Collaboration (HRC) allow a person to be within the working area of an industrial robot arm whilst maintaining their physical safety. However, research into increasing automation and social robotics have shown that attributes in the robot, such as speed and proximity setting, can influence a person’s workload and trust. Despite this, studies into how an industrial robot arm’s attributes affect a person during HRC are limited and require further development. Therefore, a study was proposed to assess the impact of robot’s speed and proximity setting on a person’s workload and trust during an HRC task. Eighty-three participants from Cranfield University and the ASK Centre, BAE Systems Samlesbury, completed a task in collaboration with a UR5 industrial robot arm running at different speeds and proximity settings, workload and trust were measured after each run. Workload was found to be positively related to speed but not significantly related to proximity setting. Significant interaction was not found for trust with speed or proximity setting. This study showed that even when operating within current safety guidelines, an industrial robot can affect a person’s workload. The lack of significant interaction with trust was attributed to the robot’s relatively small size and high success rate, and therefore may have an influence in larger industrial robots. As workload and trust can have a significant impact on a person’s performance and satisfaction, it is key to understand this relationship early in the development and design of collaborative work cells to ensure safe and high productivity.


2011 ◽  
Vol 3 (3) ◽  
Author(s):  
A. Gasparetto ◽  
A. Lanzutti ◽  
R. Vidoni ◽  
V. Zanotto

In this paper, an experimental analysis and validation of a minimum time-jerk trajectory planning algorithm is presented. The technique considers both the execution time and the integral of the squared jerk along the whole trajectory, so as to take into account the need for fast execution and the need for a smooth trajectory, by adjusting the values of two weights. The experimental tests have been carried out by using an accelerometer mounted on a Cartesian robot. The algorithm does not require a dynamic model of the robot, but just its mechanical constraints, and can be implemented in any industrial robot. The outcomes of the tests have been compared with both simulation and experimental results yielded by two trajectory planning algorithms taken from the literature.


2019 ◽  
Vol 25 ◽  
pp. 01010
Author(s):  
Hao Zhou

With the continuous development of industrial automation, the demand for industrial robots in the manufacturing field is gradually increasing. In order to meet the needs of different occasions and functions, the planning of the trajectory of the robot becomes the research direction of the six-degree-of-freedom robot. The research object of this paper is a six-degree-of-freedom industrial robot. According to engineering needs, a structure of a handling robot is designed. The kinematics of the robot and its trajectory planning are studied, and the simulation analysis is made.


Sign in / Sign up

Export Citation Format

Share Document