scholarly journals The Alteration of the Epidermal Basement Membrane Complex of Human Nevus Tissue and Keratinocyte Attachment after High Hydrostatic Pressurization

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Naoki Morimoto ◽  
Chizuru Jinno ◽  
Atsushi Mahara ◽  
Michiharu Sakamoto ◽  
Natsuko Kakudo ◽  
...  

We previously reported that human nevus tissue was inactivated after high hydrostatic pressure (HHP) higher than 200 MPa and that human cultured epidermis (hCE) engrafted on the pressurized nevus at 200 MPa but not at 1000 MPa. In this study, we explore the changes to the epidermal basement membrane in detail and elucidate the cause of the difference in hCE engraftment. Nevus specimens of 8 mm in diameter were divided into five groups (control and 100, 200, 500, and 1000 MPa). Immediately after HHP, immunohistochemical staining was performed to detect the presence of laminin-332 and type VII collagen, and the specimens were observed by transmission electron microscopy (TEM). hCE was placed on the pressurized nevus specimens in the 200, 500, and 1000 MPa groups and implanted into the subcutis of nude mice; the specimens were harvested at 14 days after implantation. Then, human keratinocytes were seeded on the pressurized nevus and the attachment was evaluated. The immunohistochemical staining results revealed that the control and 100 MPa, 200 MPa, and 500 MPa groups were positive for type VII collagen and laminin-332 immediately after HHP. TEM showed that, in all of the groups, the lamina densa existed; however, anchoring fibrils were not clearly observed in the 500 or 1000 MPa groups. Although the hCE took in the 200 and 500 MPa groups, keratinocyte attachment was only confirmed in the 200 MPa group. This result indicates that HHP at 200 MPa is preferable for inactivating nevus tissue to allow its reuse for skin reconstruction in the clinical setting.

Author(s):  
Douglas R. Keene ◽  
Gregory P. Lunstrum ◽  
Patricia Rousselle ◽  
Robert E. Burgeson

A mouse monoclonal antibody produced from collagenase digests of human amnion was used by LM and TEM to study the distribution and ultrastructural features of an antigen present in epithelial tissues and in cultured human keratinocytes, and by immunoaffinity chromatography to partially purify the antigen from keratinocyte cell culture media.By immunofluorescence microscopy, the antigen displays a tissue distribution similar to type VII collagen; positive staining of the epithelial basement membrane is seen in skin, oral mucosa, trachea, esophagus, cornea, amnion and lung. Images from rotary shadowed preparations isolated by affinity chromatography demonstrate a population of rod-like molecules 107 nm in length, having pronounced globular domains at each end. Polyacrylamide gel electrophoresis suggests that the size of this molecule is approximately 440kDa, and that it is composed of three nonidentical chains disulfide bonded together.


1991 ◽  
Vol 114 (3) ◽  
pp. 567-576 ◽  
Author(s):  
P Rousselle ◽  
G P Lunstrum ◽  
D R Keene ◽  
R E Burgeson

Basal keratinocytes attach to the underlying dermal stroma through an ultrastructurally unique and complex basement membrane zone. Electron-dense plaques along the basal surface plasma membrane, termed hemidesmosomes, appear to attach directly to the lamina densa of the basement membrane through fine strands, called anchoring filaments. The lamina densa is secured to the stroma through a complex of type VII collagen containing anchoring fibrils and anchoring plaques. We have identified what we believe is a novel antigen unique to this tissue region. The mAbs to this antigen localize to the anchoring filaments, just below the basal-dense plate of the hemidesmosomes. In cell culture, the antigen is deposited upon the culture substate by growing and migrating human keratinocytes. Addition of mAb to the cultures causes the cells to round and detach, but does not impair them metabolically. Skin fragments incubated with antibody extensively de-epithelialize. These findings strongly suggest that this antigen is intimately involved in attachment of keratinocytes to the basement membrane. This antigen was isolated from keratinocyte cultures by immunoaffinity chromatography. Two molecules are observed. The most intact species contains three nonidentical chains, 165, 155, and 140 kD linked by interchain disulfide bonds. The second and more abundant species contains the 165- and 140-kD chains, but the 155-kD chain has been proteolytically cleaved to 105 kD. Likewise, two rotary-shadowed images are observed. The larger of the two, presumably corresponding to the most intact form, appears as an asymmetric 107-nm-long rod, with a single globule at one end and two smaller globules at the other. The more abundant species, presumably the proteolytically cleaved form, lacks the distal small globule. We propose the name "kalinin" for this new molecule.


Proceedings ◽  
2019 ◽  
Vol 35 (1) ◽  
pp. 57
Author(s):  
Gabusi ◽  
Loi ◽  
Gissi ◽  
Spinelli ◽  
Bernardi ◽  
...  

Mucous membrane pemphigoid (MMP) is a rare, predominantly mucosal subepithelialblistering disorder triggered by autoantibody reactivity to several basement membrane antigensincluding BP180, BP230, laminin 332, and type VII collagen [...]


1997 ◽  
Vol 161 ◽  
pp. 491-504 ◽  
Author(s):  
Frances Westall

AbstractThe oldest cell-like structures on Earth are preserved in silicified lagoonal, shallow sea or hydrothermal sediments, such as some Archean formations in Western Australia and South Africa. Previous studies concentrated on the search for organic fossils in Archean rocks. Observations of silicified bacteria (as silica minerals) are scarce for both the Precambrian and the Phanerozoic, but reports of mineral bacteria finds, in general, are increasing. The problems associated with the identification of authentic fossil bacteria and, if possible, closer identification of bacteria type can, in part, be overcome by experimental fossilisation studies. These have shown that not all bacteria fossilise in the same way and, indeed, some seem to be very resistent to fossilisation. This paper deals with a transmission electron microscope investigation of the silicification of four species of bacteria commonly found in the environment. The Gram positiveBacillus laterosporusand its spore produced a robust, durable crust upon silicification, whereas the Gram negativePseudomonas fluorescens, Ps. vesicularis, andPs. acidovoranspresented delicately preserved walls. The greater amount of peptidoglycan, containing abundant metal cation binding sites, in the cell wall of the Gram positive bacterium, probably accounts for the difference in the mode of fossilisation. The Gram positive bacteria are, therefore, probably most likely to be preserved in the terrestrial and extraterrestrial rock record.


Author(s):  
P. Maupin-Szamier ◽  
T. D. Pollard

We have studied the destruction of rabbit muscle actin filaments by osmium tetroxide (OSO4) to develop methods which will preserve the structure of actin filaments during preparation for transmission electron microscopy.Negatively stained F-actin, which appears as smooth, gently curved filaments in control samples (Fig. 1a), acquire an angular, distorted profile and break into progressively shorter pieces after exposure to OSO4 (Fig. 1b,c). We followed the time course of the reaction with viscometry since it is a simple, quantitative method to assess filament integrity. The difference in rates of decay in viscosity of polymerized actin solutions after the addition of four concentrations of OSO4 is illustrated in Fig. 2. Viscometry indicated that the rate of actin filament destruction is also dependent upon temperature, buffer type, buffer concentration, and pH, and requires the continued presence of OSO4. The conditions most favorable to filament preservation are fixation in a low concentration of OSO4 for a short time at 0°C in 100mM sodium phosphate buffer, pH 6.0.


Author(s):  
Shirley Siew ◽  
Philip Troen ◽  
Howard R. Nankin

Testicular biopsies were obtained from six young male subjects (age range 24-33) who complained of infertility and who had clinical evidence of oligospermia. This was confirmed on histological examination which showed a broad spectrum from profound hypospermatogenesis to relatively normal appearing germinal epithelium. Thickening of the tubular walls was noted in half of the cases and slight peritubular fibrosis in one. The Leydig cells were reported as normal or unremarkable.Transmission electron microscopy showed that the thickening of the supporting tissue of the germinal epithelium was caused more by an increase in the thickness of the layers of the lamina propria than of the tubular wall itself. The changes in the basement membrane of the tubular wall consisted mostly of a greater degree of infolding into the tubule and some reduplication which gave rise to a multilayered appearance.


Author(s):  
Veronika Burmeister ◽  
R. Swaminathan

Porphyria cutanea tarda (PCT) is a disorder of porphyrin metabolism which occurs most often during middle age. The disease is characterized by excessive production of uroporphyrin which causes photosensitivity and skin eruptions on hands and arms, due to minor trauma and exposure to sunlight. The pathology of the blister is well known, being subepidermal with epidermodermal separation, it is not always absolutely clear, whether the basal lamina is attached to the epidermis or the dermis. The purpose of our investigation was to study the attachment of the basement membrane in the blister by comparing scanning with transmission electron microscopy.


Author(s):  
K. A. Holbrook

The dermal-epidermal junction (DEJ), or basement membrane rone, is the boundary between the epithelial and mesenchymal compartments of the skin; epidermal and fibroblastic cells in these two regions collaborate to synthesire its components. Ultrastructural studies (TEM and SEM) have defined a series of planes or layers (basal epidermal, lamina lucida, lamina densa, sublamina densa) and the morphology and density of attachment structures (hemidesmosomes, anchoring filaments, anchoring fibrils and anchoring plaques) in this region of normal skin. Change in structure of the DEJ provides information about the history of the tissue; reduplication of the lamina densa, for example, indicates a site of cell detachment or migration, or remodelling that accompanies repair of focal damage. In normal skin the structure of the DEJ is stable; in pathologic conditions it can be compromised by the congenital absence of certain structures or antigens (e.g., in the inherited disorders, epidermolysis bullosa [EB]) or by enzymatic degradation (e.g., in tumor invasion). Dissolution of the DEJ can also occur normally during the formation of epidermal appendages (e.g., hair follicles) and as melanocytes and Langerhans cells migrate into the epidermis during development.Biochemical and immunohisto/cytochemical studies have identified more than 20 molecules at the DEJ. These include well known matrix molecules (e.g., types IV and V collagen, laminin and fibronectin) and skin-specific antigens. The latter have been identified by autoantibodies or specific polyclonal or monoclonal antibodies raised against the skin, cultured cells and other epithelia. Some of the molecules of the DEJ are are present in basement membrane zones of many epithelia and thus are considered ubiquitous components (type IV, V, laminin, fibronectin, nidogen, entactin, HSPG, LDA-1, CSP [3B3]). All of them (that have been investigated in developing skin) appear ontogenetically as early as human embryonic tissue can be obtained and their expression is typically normal in patients with EB. The known properties of many of these molecules (particularly the matrix components) suggest functions they might impart to the DEJ: support of an epithelium (type IV collagen), regulation of permeability (heparan sulfate proteoglycan) or facilitation of cell attachment (fibronectin) and movement (laminin). Another group of matrix components and antigens of the DEJ includes molecules that are skin-specific or characteristic of stratified squamous epithelia (type VII collagen=LH 7:2 antigen, bullous pemphigoid antigen, AA3, GB3, KF-1,19-DEJ-1, epidermolysis bullosa acquisita antigen [EBA], AF-1 and AF-2, cicatricial pemphigoid antigen [CPA]) . These molecules are expressed in the DEJ later in development than the first group of molecules, in conjunction with the morphologic appearance of the structure they represent. Their appearance is also coordinated with specific developmental events (e.g., epidermal stratification) and the expression of molecules of differentiation in the epidermis and dermis. One or more of them is typically absent or reduced in expression in the skin of patients with heritable disorders affecting this region. There is no apparent correlation between the location of molecules in the DEJ and the stability of their expression.


Author(s):  
I. A. Rauf

To understand the electronic conduction mechanism in Sn-doped indium oxide thin films, it is important to study the effect of dopant atoms on the neighbouring indium oxide lattice. Ideally Sn is a substitutional dopant at random indium sites. The difference in valence (Sn4+ replaces In3+) requires that an extra electron is donated to the lattice and thus contributes to the free carrier density. But since Sn is an adjacent member of the same row in the periodic table, the difference in the ionic radius (In3+: 0.218 nm; Sn4+: 0.205 nm) will introduce a strain in the indium oxide lattice. Free carrier electron waves will no longer see a perfect periodic lattice and will be scattered, resulting in the reduction of free carrier mobility, which will lower the electrical conductivity (an undesirable effect in most applications).One of the main objectives of the present investigation is to understand the effects of the strain (produced by difference in the ionic radius) on the microstructure of the indium oxide lattice when the doping level is increased to give high carrier densities. Sn-doped indium oxide thin films were prepared with four different concentrations: 9, 10, 11 and 12 mol. % of SnO2 in the starting material. All the samples were prepared at an oxygen partial pressure of 0.067 Pa and a substrate temperature of 250°C using an Edwards 306 coating unit with an electron gun attachment for heating the crucible. These deposition conditions have been found to give optimum electrical properties in Sn-doped indium oxide films. A JEOL 2000EX transmission electron microscope was used to investigate the specimen microstructure.


Sign in / Sign up

Export Citation Format

Share Document