scholarly journals Delay-Aware Program Codes Dissemination Scheme in Internet of Everything

2016 ◽  
Vol 2016 ◽  
pp. 1-18 ◽  
Author(s):  
Yixuan Xu ◽  
Anfeng Liu ◽  
Changqin Huang

Due to recent advancements in big data, connection technologies, and smart devices, our environment is transforming into an “Internet of Everything” (IoE) environment. These smart devices can obtain new or special functions by reprogramming: upgrade their soft systems through receiving new version of program codes. However, bulk codes dissemination suffers from large delay, energy consumption, and number of retransmissions because of the unreliability of wireless links. In this paper, a delay-aware program dissemination (DAPD) scheme is proposed to disseminate program codes with fast, reliable, and energy-efficient style. We observe that although total energy is limited in wireless sensor network, there exists residual energy in nodes deployed far from the base station. Therefore, DAPD scheme improves the performance of bulk codes dissemination through the following two aspects. (1) Due to the fact that a high transmitting power can significantly improve the quality of wireless links, transmitting power of sensors with more residual energy is enhanced to improve link quality. (2) Due to the fact that performance of correlated dissemination tends to degrade in a highly dynamic environment, link correlation is autonomously updated in DAPD during codes dissemination to maintain improvements brought by correlated dissemination. Theoretical analysis and experimental results show that, compared with previous work, DAPD scheme improves the dissemination performance in terms of completion time, transmission cost, and the efficiency of energy utilization.

2019 ◽  
Vol 13 (3) ◽  
pp. 261-273
Author(s):  
R. Sharma ◽  
D.K. Lobiyal

Background: A significant issue of consideration in wireless sensor networks is to reduce the energy utilization while preserving the required coverage and connectivity of an area of interest. We have revised all patents relating to preserving of energy in sensor motes of the wireless sensor networks. Methods: We proposed a novel; Intelligent Water Drop based coverage-connectivity and lifespan protocol which minimizes energy consumption of the network. In this routing protocol, sensors are partitioned into the connected first layer and connected successive layer sets and a scheduling mechanism has been used to activate and deactivate sensors. Multi-hoping is used to transmit packets from sensors to the Base Station and sensor with maximum residual energy has been selected as the next hop. Power wastage has been avoided by removing duplicate information through a common relay node. Results: We have derived the expected number of sensors required to cover an area of interest and our protocol gives a long life to the network. A theorem has been provided to validate the results for different communication ranges of sensors. Conclusion: The protocol has been compared with other protocols and it proved better than other protocols in terms of the lifespan and the coverage ratio of the area. Results approve that our protocol reduces the problem of energy holes and maintains the connectivity of the network.


2021 ◽  
Vol 4 (2) ◽  
pp. 25
Author(s):  
Anupkumar Bongale ◽  
Arunkumar Bongale ◽  
Satish Kumar ◽  
Rahul Joshi ◽  
Kishore Bhamidipati

Efficient energy utilization and network life prolongation are primary objectives to be considered when designing a Wireless Sensor Network. Cluster-based routing protocols are most suitable for achieving such goals. Energy and Optimal Inter Cluster Head Distance (EOICHD) is a cluster-based hierarchical routing protocol inspired by the Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol. EOICHD resolves the problems associated with LEACH protocol, such as selecting cluster head nodes in close proximity. By carefully selecting the cluster head nodes based on residual energy and optimal inter-cluster head distance, EOICHD ensures that selected cluster head nodes are separated by a certain optimal distance. This approach ensures uniform distribution of cluster head nodes across the entire network. The study of the EOICHD protocol presented so far is not sufficient. Hence, in this paper, we propose three variants of EOICHD protocol to understand its behavior in a better manner. A comparative analysis of all three EOICHD variants, LEACH and LEACH-central constrained (LEACH-C) protocol, is performed by considering comparative parameters such as alive nodes, cumulative network energy, data packets arrived at the base station, and stability of the network.


2015 ◽  
Vol 733 ◽  
pp. 734-739 ◽  
Author(s):  
Xiang Nan Xu ◽  
Ming Bo Xiao ◽  
Wei Yan

Focus on the character of energy harvesting sensor network in heterogeneous sensor network and some shortage in SEP algorithm, an improved algorithm for EH-SEP is been proposed. EH-SEP considers both residual energy and energy support of nodes in cluster-head election process .Improved algorithm achieves higher probability that the advanced nodes with high residual energy to be cluster-head, and lower probability that the traditional nodes with low residual energy to be cluster-head. During the state of data sensing, this paper adopted multiple hop data transmission to avoid long distance communication between the cluster head and base station, so it can improve the network energy utilization. The simulation result shows that: EH-SEP algorithm is not only suitable for energy harvesting of wireless sensor network, but also effectively prolong the work time in the network stable stage.


Author(s):  
Raghunandan G H Et.al

Wireless Sensor Network are spatially distributed sensors intended to monitor different physiological conditions. Sensing and communicating data from one place to another consumes more energy, therefore the management of sensor energy is a very important factor. Energy utilization, synchronization, and a lifetime of the network are the main criteria in WSN. More energy is utilized by sensors that are distant from the base station. The gateway nodes are deployed to collect and relay information from nodes to the base station to resolve this problem. To decrease energy consumption, gateway nodes are deployed in the network. In this paper, a hybrid approach is used to increase the overall efficiency of the network in WSNs with time synchronization which increases the throughput of the network. The efficiency of proposed protocol based network has shown improvements in network lifetime, residual energy, data packets, and the throughput of the network. The performance of WSN of the proposed scheme is compared to other classical routing schemes and the proposed algorithm has proved its merit.


Smart Cities ◽  
2020 ◽  
Vol 3 (1) ◽  
pp. 74-92 ◽  
Author(s):  
Shahzad Ashraf ◽  
Tauqeer Ahmed ◽  
Asif Raza ◽  
Hamad Naeem

During the course of ubiquitous data monitoring in the underwater environment, achieving sustainable communication links among the sensor nodes with astute link quality seems an ordeal challenge. Energy utilization has a direct impact because all active devices are battery dependent and no charging or replacement actions can be made when cost- effective data packet delivery has been set as the benchmark. Hop link inspection and the selection of a Shrewd link through a resurrecting link factor have been nothing short of a bleak challenge, and only possible after meticulous research to develop a shrewd underwater routing synergy using extra porous energy shells (SURS-PES) which has never been conducted before. After broadcasting packets, the sensor node conducts a link inspection phase, thereby, if any link is found to be less than or equal to 50% shaky, the destination receiving node adds its residual energy status and returns it to the source node which adds some unusable energy porous shell to strengthen the link from 5% to a maximum of 90% and sends it only to the targeted node, therefore, an unaltered data packet delivery is anticipated. Performance evaluation was carried out using an NS2 simulator and the obtained results were compared with depth-based routing (DBR) and energy efficient DBR (EEDBR) to observe the outcomes with results that confirmed the previously mentioned direction for research in this area.


2020 ◽  
Vol 39 (6) ◽  
pp. 8139-8147
Author(s):  
Ranganathan Arun ◽  
Rangaswamy Balamurugan

In Wireless Sensor Networks (WSN) the energy of Sensor nodes is not certainly sufficient. In order to optimize the endurance of WSN, it is essential to minimize the utilization of energy. Head of group or Cluster Head (CH) is an eminent method to develop the endurance of WSN that aggregates the WSN with higher energy. CH for intra-cluster and inter-cluster communication becomes dependent. For complete, in WSN, the Energy level of CH extends its life of cluster. While evolving cluster algorithms, the complicated job is to identify the energy utilization amount of heterogeneous WSNs. Based on Chaotic Firefly Algorithm CH (CFACH) selection, the formulated work is named “Novel Distributed Entropy Energy-Efficient Clustering Algorithm”, in short, DEEEC for HWSNs. The formulated DEEEC Algorithm, which is a CH, has two main stages. In the first stage, the identification of temporary CHs along with its entropy value is found using the correlative measure of residual and original energy. Along with this, in the clustering algorithm, the rotating epoch and its entropy value must be predicted automatically by its sensor nodes. In the second stage, if any member in the cluster having larger residual energy, shall modify the temporary CHs in the direction of the deciding set. The target of the nodes with large energy has the probability to be CHs which is determined by the above two stages meant for CH selection. The MATLAB is required to simulate the DEEEC Algorithm. The simulated results of the formulated DEEEC Algorithm produce good results with respect to the energy and increased lifetime when it is correlated with the current traditional clustering protocols being used in the Heterogeneous WSNs.


2020 ◽  
Vol 17 (12) ◽  
pp. 5447-5456
Author(s):  
R. M. Alamelu ◽  
K. Prabu

Wireless sensor network (WSN) becomes popular due to its applicability in distinct application areas like healthcare, military, search and rescue operations, etc. In WSN, the sensor nodes undergo deployment in massive number which operates autonomously in harsh environment. Because of limited resources and battery operated sensor nodes, energy efficiency is considered as a main design issue. To achieve, clustering is one of the effective technique which organizes the set of nodes into clusters and cluster head (CH) selection takes place. This paper presents a new Quasi Oppositional Glowworm Swarm Optimization (QOGSO) algorithm for energy efficient clustering in WSN. The proposed QOGSO algorithm is intended to elect the CHs among the sensor nodes using a set of parameters namely residual energy, communication cost, link quality, node degree and node marginality. The QOGSO algorithm incorporates quasi oppositional based learning (QOBL) concept to improvise the convergence rate of GSO technique. The QOGSO algorithm effectively selects the CHs and organizes clusters for minimized energy dissipation and maximum network lifetime. The performance of the QOGSO algorithm has been evaluated and the results are assessed interms of distinct evaluation parameters.


Author(s):  
Yakubu Abdul-Wahab Nawusu ◽  
Alhassan Abdul-Barik ◽  
Salifu Abdul-Mumin

Extending the lifetime of a wireless sensor network is vital in ensuring continuous monitoring functions in a target environment. Many techniques have appeared that seek to achieve such prolonged sensing gains. Clustering and improved selection of cluster heads play essential roles in the performance of sensor network functions. Cluster head in a hierarchical arrangement is responsible for transmitting aggregated data from member nodes to a base station for further user-specific data processing and analysis. Minimising the quick dissipation of cluster heads energy requires a careful choice of network factors when selecting a cluster head to prolong the lifetime of a wireless sensor network. In this work, we propose a multi-criteria cluster head selection technique to extend the sensing lifetime of a heterogeneous wireless sensor network. The proposed protocol incorporates residual energy, distance, and node density in selecting a cluster head. Each factor is assigned a weight using the Rank Order Centroid based on its relative importance. Several simulation tests using MATLAB 7.5.0 (R2007b) reveal improved network lifetime and other network performance indicators, including stability and throughput, compared with popular protocols such as LEACH and the SEP. The proposed scheme will be beneficial in applications requiring reliable and stable data sensing and transmission functions.


2017 ◽  
Vol 16 (7) ◽  
pp. 7031-7039
Author(s):  
Chamanpreet Kaur ◽  
Vikramjit Singh

Wireless sensor network has revolutionized the way computing and software services are delivered to the clients on demand. Our research work proposed a new method for cluster head selection having less computational complexity. It was also found that the modified approach has improved performance to that of the other clustering approaches. The cluster head election mechanism will include various parameters like maximum residual energy of a node, minimum separation distance and minimum distance to the mobile node. Each CH will create a TDMA schedule for the member nodes to transmit the data. Nodes will have various level of power for signal amplification. The three levels of power are used for amplifying the signal. As the member node will send only its own data to the cluster head, the power level of the member node is set to low. The cluster head will send the data of the whole cluster to the mobile node, therefore the power level of the cluster head is set to medium. High power level is used for mobile node which will send the data of the complete sector to the base station. Using low energy level for intra cluster transmissions (within the cluster) with respect to cluster head to mobile node transmission leads in saving much amount of energy. Moreover, multi-power levels also reduce the packet drop ratio, collisions and/ or interference for other signals. It was found that the proposed algorithm gives a much improved network lifetime as compared to existing work. Based on our model, multiple experiments have been conducted using different values of initial energy.


Wireless sensor network plays prominently in various applications of the emerging advanced wireless technology such as smart homes, Commercial, defence sector and modern agriculture for effective communication. There are many issues and challenges involved during the communication process. Energy conservation is the major challenging matter and fascinates issue among the researchers. The reason for that, Wireless sensor network has ‘n’ number of sensor nodes to identify and recognize the data and send that data to the base station or sink through either directly or intermediate node. These nodes with poor energy create intricacy on the data rate or flow and substantially affect the lifespan of a wireless sensor network. To decrease energy utilization the sensor node has to neglect unnecessary received data from the neighbouring nodes prior to send the optimum data to the sink or another device. When a specific target is held in a particular sector, it can be identified by many sensors. To rectify such process this paper present Data agglomeration technique is one of the persuasive techniques in the neglecting unnecessary data and of improves energy efficiency and also it increases the lifetime of WSNs. The efficacious data aggregation paradigm can also decrease traffic in the network. This paper discussed various data agglomeration technique for efficient energy in WSN.


Sign in / Sign up

Export Citation Format

Share Document