scholarly journals Design of Shrewd Underwater Routing Synergy Using Porous Energy Shells

Smart Cities ◽  
2020 ◽  
Vol 3 (1) ◽  
pp. 74-92 ◽  
Author(s):  
Shahzad Ashraf ◽  
Tauqeer Ahmed ◽  
Asif Raza ◽  
Hamad Naeem

During the course of ubiquitous data monitoring in the underwater environment, achieving sustainable communication links among the sensor nodes with astute link quality seems an ordeal challenge. Energy utilization has a direct impact because all active devices are battery dependent and no charging or replacement actions can be made when cost- effective data packet delivery has been set as the benchmark. Hop link inspection and the selection of a Shrewd link through a resurrecting link factor have been nothing short of a bleak challenge, and only possible after meticulous research to develop a shrewd underwater routing synergy using extra porous energy shells (SURS-PES) which has never been conducted before. After broadcasting packets, the sensor node conducts a link inspection phase, thereby, if any link is found to be less than or equal to 50% shaky, the destination receiving node adds its residual energy status and returns it to the source node which adds some unusable energy porous shell to strengthen the link from 5% to a maximum of 90% and sends it only to the targeted node, therefore, an unaltered data packet delivery is anticipated. Performance evaluation was carried out using an NS2 simulator and the obtained results were compared with depth-based routing (DBR) and energy efficient DBR (EEDBR) to observe the outcomes with results that confirmed the previously mentioned direction for research in this area.

2020 ◽  
Author(s):  
Shahzad Ashraf ◽  
Tauqeer Ahmed ◽  
Asif Raza ◽  
Hamad Naeem

Abstract Underwater sensors link establishment and quality inspection challenges are blurt out during ubiquitous data monitoring. The energy utilization has a direct impact because all active devices are battery dependents and no charging or replacement actions could be made when cost- effective data packet delivery has been set as a benchmark. The hop link inspection and the selection of a Shrewd link through resurrecting link factor was a nothing short of bleak challenge which could only be made possible after going through meticulous research by developing a shrewd underwater routing synergy using extra porous energy shells (SURS-PES) which might never have conducted of before. After broadcasting packets the sensor node conducts a link inspection phase thereby, if any link is found to be less than or equal to 50% shaky; the destination receiving node puts in own residual energy status and return back to the source node which in result adds some unusable energy porous shell to strengthen the link from 50 to 90% at most and send it only to the targeted node and an unaltered data packet delivery is anticipated. Performance evaluation has been carried out using NS2 simulator and obtained results have been compared with DBR and EEDBR to observe the distinguish outcomes thereon results in vouches for the statement that has been made earlier for this research direction.


2020 ◽  
Vol 39 (6) ◽  
pp. 8139-8147
Author(s):  
Ranganathan Arun ◽  
Rangaswamy Balamurugan

In Wireless Sensor Networks (WSN) the energy of Sensor nodes is not certainly sufficient. In order to optimize the endurance of WSN, it is essential to minimize the utilization of energy. Head of group or Cluster Head (CH) is an eminent method to develop the endurance of WSN that aggregates the WSN with higher energy. CH for intra-cluster and inter-cluster communication becomes dependent. For complete, in WSN, the Energy level of CH extends its life of cluster. While evolving cluster algorithms, the complicated job is to identify the energy utilization amount of heterogeneous WSNs. Based on Chaotic Firefly Algorithm CH (CFACH) selection, the formulated work is named “Novel Distributed Entropy Energy-Efficient Clustering Algorithm”, in short, DEEEC for HWSNs. The formulated DEEEC Algorithm, which is a CH, has two main stages. In the first stage, the identification of temporary CHs along with its entropy value is found using the correlative measure of residual and original energy. Along with this, in the clustering algorithm, the rotating epoch and its entropy value must be predicted automatically by its sensor nodes. In the second stage, if any member in the cluster having larger residual energy, shall modify the temporary CHs in the direction of the deciding set. The target of the nodes with large energy has the probability to be CHs which is determined by the above two stages meant for CH selection. The MATLAB is required to simulate the DEEEC Algorithm. The simulated results of the formulated DEEEC Algorithm produce good results with respect to the energy and increased lifetime when it is correlated with the current traditional clustering protocols being used in the Heterogeneous WSNs.


2020 ◽  
Vol 17 (12) ◽  
pp. 5447-5456
Author(s):  
R. M. Alamelu ◽  
K. Prabu

Wireless sensor network (WSN) becomes popular due to its applicability in distinct application areas like healthcare, military, search and rescue operations, etc. In WSN, the sensor nodes undergo deployment in massive number which operates autonomously in harsh environment. Because of limited resources and battery operated sensor nodes, energy efficiency is considered as a main design issue. To achieve, clustering is one of the effective technique which organizes the set of nodes into clusters and cluster head (CH) selection takes place. This paper presents a new Quasi Oppositional Glowworm Swarm Optimization (QOGSO) algorithm for energy efficient clustering in WSN. The proposed QOGSO algorithm is intended to elect the CHs among the sensor nodes using a set of parameters namely residual energy, communication cost, link quality, node degree and node marginality. The QOGSO algorithm incorporates quasi oppositional based learning (QOBL) concept to improvise the convergence rate of GSO technique. The QOGSO algorithm effectively selects the CHs and organizes clusters for minimized energy dissipation and maximum network lifetime. The performance of the QOGSO algorithm has been evaluated and the results are assessed interms of distinct evaluation parameters.


2020 ◽  
Vol 10 (5) ◽  
pp. 1885 ◽  
Author(s):  
Liangrui Tang ◽  
Zhilin Lu ◽  
Bing Fan

In energy-constrained wireless sensor networks, low energy utilization and unbalanced energy distribution are seriously affecting the operation of the network. Therefore, efficient and reasonable routing algorithms are needed to achieve higher Quality of Service (QoS). For the Dempster–Shafer (DS) evidence theory, it can fuse multiple attributes of sensor nodes with reasonable theoretical deduction and has low demand for prior knowledge. Based on the above, we propose an energy efficient and reliable routing algorithm based on DS evidence theory (DS-EERA). First, DS-EERA establishes three attribute indexes as the evidence under considering the neighboring nodes’ residual energy, traffic, the closeness of its path to the shortest path, etc. Then we adopt the entropy weight method to objectively determine the weight of three indexes. After establishing the basic probability assignment (BPA) function, the fusion rule of DS evidence theory is applied to fuse the BPA function of each index value to select the next hop. Finally, each node in the network transmits data through this routing strategy. Theoretical analysis and simulation results show that DS-EERA is promising, which can effectively prolong the network lifetime. Meanwhile, it can also reach a lower packet loss rate and improve the reliability of data transmission.


Author(s):  
Fatima Al-Shihri ◽  
Mohammed Arafah

The authors proposed a Reliable and energy efficient Routing Protocol (RRP) for underwater sensor network, integrating the desired features of the Directional Flooding based Routing (DFR) and Vector Based Void Avoidance (VBVA) protocols. The new algorithm considers reliability and takes into consideration the residual energy for each node before choosing the forwarding node. RRP relies on a packet flooding technique to increase reliability. However, to prevent a packet from flooding to the whole network, they control the number of nodes forwarding a packet by measuring a link quality between nodes in a hop by hop. To mitigate the effect of the inherent void problem, the authors consider residual energy, link quality, and distance from destination node to choose a reliable path to forward packet to destination. The authors observe that RRP protocol has better performance in terms of the packet delivery ratio than the DFR protocol due to the void avoidance technique.


2016 ◽  
Vol 2016 ◽  
pp. 1-18 ◽  
Author(s):  
Yixuan Xu ◽  
Anfeng Liu ◽  
Changqin Huang

Due to recent advancements in big data, connection technologies, and smart devices, our environment is transforming into an “Internet of Everything” (IoE) environment. These smart devices can obtain new or special functions by reprogramming: upgrade their soft systems through receiving new version of program codes. However, bulk codes dissemination suffers from large delay, energy consumption, and number of retransmissions because of the unreliability of wireless links. In this paper, a delay-aware program dissemination (DAPD) scheme is proposed to disseminate program codes with fast, reliable, and energy-efficient style. We observe that although total energy is limited in wireless sensor network, there exists residual energy in nodes deployed far from the base station. Therefore, DAPD scheme improves the performance of bulk codes dissemination through the following two aspects. (1) Due to the fact that a high transmitting power can significantly improve the quality of wireless links, transmitting power of sensors with more residual energy is enhanced to improve link quality. (2) Due to the fact that performance of correlated dissemination tends to degrade in a highly dynamic environment, link correlation is autonomously updated in DAPD during codes dissemination to maintain improvements brought by correlated dissemination. Theoretical analysis and experimental results show that, compared with previous work, DAPD scheme improves the dissemination performance in terms of completion time, transmission cost, and the efficiency of energy utilization.


A large number of tiny sensor nodes are grouped together to form Wireless Sensor Network (WSN). In Industry and other areas using of sensors are increasing every day. Therefore, the energy utilization of sensor nodes becomes a vital problem due to non-rechargeable battery. To improve the vital resources, the energy efficient clustering models are to be improved. This paper presents a novel idea IFLCH: Intuitionistic Fuzzy Logic based Cluster Head Selection for WSNs for electing Cluster Head (CH) based on the energy efficiency parameters such as residual energy, distance between neighbors. The proposed scheme also elects Super CH (SCH) based on the above-mentioned parameters along with number of neighbors. The simulation results compared the proposed model with the existing schemes and it receives better performance by selecting efficient CH and SCH.


2018 ◽  
Vol 8 (8) ◽  
pp. 1409 ◽  
Author(s):  
Yangzhe Liao ◽  
Quan Yu ◽  
Yi Han ◽  
Mark Leeson

Inspired by the recent developments of the Internet of Things (IoT) relay and mobile edge computing (MEC), a hospital/home-based medical monitoring framework is proposed, in which the intensive computing tasks from the implanted sensors can be efficiently executed by on-body wearable devices or a coordinator-based MEC (C-MEC). In this paper, we first propose a wireless relay-enabled task offloading mechanism that consists of a network model and a computation model. Moreover, to manage the computation resources among all relays, a task offloading decision model and the best task offloading recipient selection function is given. The performance evaluation considers different computation schemes under the predetermined link quality condition regarding the selected vital quality of service (QoS) metrics. After demonstrating the channel characterization and network topology, the performance evaluation is implemented under different scenarios regarding the network lifetime of all relays, network residual energy status, total number of locally executed packets, path loss (PL), and service delay. The results show that data transmission without the offloading scheme outperforms the offload-based technique regarding network lifetime. Moreover, the high computation capacity scenario achieves better performance regarding PL and the total number of locally executed packets.


Wireless networks consist of nodes, having the ability that, they can sense and collect the information from the nearby surroundings. It has the responsibility of designed protocol to send this collected information by data gathering and forward it to the outside network via a sink node. Furthermore, WSNs doesn’t need any predetermined network structure; all the nodes used in WSN can operate as a router as well as the host. It uses multiple hops to send information to the node outside the communication range through different neighbor nodes. All the sensor nodes in WSN have their range of communication and can send and collect messages straight to each other until they were in the communication range. Moreover, the Self-organizing property of nodes in the network made WSN outstanding amongst the major applications. Nevertheless, the wireless nodes there in the network have a battery with restricted energy and can’t be recharge or change once deployed. Hence, the node energy must be utilized efficiently for various functions as sensing the information, processing the sensed information, and transmitting the processed information to another node. With the enhancements of the innovation and cost-effective hardware, our visualization presents a tremendous life enhancement of WSN into several new applications. To modify following such background, the energy-efficient routing protocol is extremely desirable and can be achieved by clustering in WSN. In the literature survey, various energy-efficient routing techniques based on cluster have been given to attain the energy-efficiency and enhance the lifetime of the network. However, these protocols were suffering from the bottleneck node issue. It is the situation in the network where the router node subjected to heavy traffic due to its presence in energy-efficient routing path or high remaining energy. This paper aims to moderate the possibility of the node to become a bottleneck node throughout the application. Thus, we attain the objective by design and develop the cluster-based efficient-routing protocol by selecting the head nodes of the cluster based on their residual energy and buffer status. Performance outcome shows that the projected work out-performs in contrast with present cluster-based routing protocols.


Author(s):  
Kanchana Devi Vadivel ◽  
Ganesan Ramarao

In wireless sensor network (WSN), energy and packet forwarding tendencies of sensor nodes plays a potential role in ensuring a maximum degree of co-operation under data delivery. This quantified level of co-operation represents the performance of the network in terms of increased packet delivery rate, throughput and decreased level of control overhead and delay depending on the data being aggregated. The performance of a sensor network is highly influenced by the selfish behaving nature of sensor nodes that gets exhibited when the residual energy reaches below a tolerable level of activeness in packet forwarding. The selfish sensor node needs to be identified in future through reliable forecasting mechanism for improving the lifetime and packet delivery rate. Semi-Markov Process Inspired Selfish-aware Co-operative Scheme for WSNs (SMPISCS) is propounded for making an attempt to mitigate selfish nodes for prolonging the lifetime of the network and balancing energy consumptions of the network. In SMPISCS model possible kinds of sensor node’s behavior for quantifying and future forecasting the probability with which the node could turn into selfish. Simulation experiments are carried out through ns-2 and the performance of the network are analyzed based on varying number of sensor nodes, number of selfish sensor nodes and range of detection threshold.


Sign in / Sign up

Export Citation Format

Share Document