scholarly journals Identification and Characterization of Small Noncoding RNAs in Genome Sequences of the Edible FungusPleurotus ostreatus

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Jibin Qu ◽  
Mengran Zhao ◽  
Tom Hsiang ◽  
Xiaoxing Feng ◽  
Jinxia Zhang ◽  
...  

Noncoding RNAs (ncRNAs) have been identified in many fungi. However, no genome-scale identification of ncRNAs has been inventoried for basidiomycetes. In this research, we detected 254 small noncoding RNAs (sncRNAs) in a genome assembly of an isolate (CCEF00389) ofPleurotus ostreatus, which is a widely cultivated edible basidiomycetous fungus worldwide. The identified sncRNAs include snRNAs, snoRNAs, tRNAs, and miRNAs. SnRNA U1 was not found in CCEF00389 genome assembly and some other basidiomycetous genomes by BLASTn. This implies that if snRNA U1 of basidiomycetes exists, it has a sequence that varies significantly from other organisms. By analyzing the distribution of sncRNA loci, we found that snRNAs and most tRNAs (88.6%) were located in pseudo-UTR regions, while miRNAs are commonly found in introns. To analyze the evolutionary conservation of the sncRNAs inP. ostreatus, we aligned all 254 sncRNAs to the genome assemblies of some other Agaricomycotina fungi. The results suggest that most sncRNAs (77.56%) were highly conserved inP. ostreatus, and 20% were conserved in Agaricomycotina fungi. These findings indicate that most sncRNAs ofP. ostreatuswere not conserved across Agaricomycotina fungi.

2021 ◽  
Author(s):  
Meili Chen ◽  
Yingke Ma ◽  
Song Wu ◽  
Xinchang Zheng ◽  
Hongen Kang ◽  
...  

AbstractThe Genome Warehouse (GWH) is a public repository housing genome assembly data for a wide range of species and delivering a series of web services for genome data submission, storage, release, and sharing. As one of the core resources in the National Genomics Data Center (NGDC), part of the China National Center for Bioinformation (CNCB, https://bigd.big.ac.cn/), GWH accepts both full genome and partial genome (chloroplast, mitochondrion, and plasmid) sequences with different assembly levels, as well as an update of existing genome assemblies. For each assembly, GWH collects detailed genome-related metadata including biological project and sample, and genome assembly information, in addition to genome sequence and annotation. To archive high-quality genome sequences and annotations, GWH is equipped with a uniform and standardized procedure for quality control. Besides basic browse and search functionalities, all released genome sequences and annotations can be visualized with JBrowse. By December 2020, GWH has received 17,264 direct submissions covering a diversity of 949 species, and has released 3370 of them. Collectively, GWH serves as an important resource for genome-scale data management and provides free and publicly accessible data to support research activities throughout the world. GWH is publicly accessible at https://bigd.big.ac.cn/gwh/.


2006 ◽  
Vol 394 (3) ◽  
pp. 575-579 ◽  
Author(s):  
Sergey V. Novoselov ◽  
Deame Hua ◽  
Alexey V. Lobanov ◽  
Vadim N. Gladyshev

Sec (selenocysteine) is a rare amino acid in proteins. It is co-translationally inserted into proteins at UGA codons with the help of SECIS (Sec insertion sequence) elements. A full set of selenoproteins within a genome, known as the selenoproteome, is highly variable in different organisms. However, most of the known eukaryotic selenoproteins are represented in the mammalian selenoproteome. In addition, many of these selenoproteins have cysteine orthologues. Here, we describe a new selenoprotein, designated Fep15, which is distantly related to members of the 15 kDa selenoprotein (Sep15) family. Fep15 is absent in mammals, can be detected only in fish and is present in these organisms only in the selenoprotein form. In contrast with other members of the Sep15 family, which contain a putative active site composed of Sec and cysteine, Fep15 has only Sec. When transiently expressed in mammalian cells, Fep15 incorporated Sec in an SECIS- and SBP2 (SECIS-binding protein 2)-dependent manner and was targeted to the endoplasmic reticulum by its N-terminal signal peptide. Phylogenetic analyses of Sep15 family members suggest that Fep15 evolved by gene duplication.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Hao Yang ◽  
Haiyang Zhang ◽  
Lin Zhu ◽  
Chenyu Zhang ◽  
Donghai Li

MicroRNAs (miRNAs) are small noncoding RNAs which repress gene expression at the posttranscriptional level. In this study, an expressed sequence tag (EST)-based combined method was applied for the detection of miRNAs inMacaca fasciculariswhich is used as a model animal extensively in medical experiments, particularly those involved with neuroscience and disease. Initially, previously known miRNA sequences from metazoans were used to blast with the EST databases ofMacaca fascicularis, and then a range of filtering criteria was conducted to remove some pseudo ones. At last a total of 8 novel conserved miRNAs were identified; their functions were further predicted and analyzed. Together, our study provides insight into miRNAs and their functions inMacaca fascicularis, indicating that the EST analysis is an efficient and affordable alternative approach for identifying novel miRNA candidates.


Author(s):  
Marco A. Riojas ◽  
Andrew M. Frank ◽  
Samuel R. Greenfield ◽  
Stephen P. King ◽  
Conor J. Meehan ◽  
...  

mSphere ◽  
2016 ◽  
Vol 1 (5) ◽  
Author(s):  
José F. Muñoz ◽  
Rhys A. Farrer ◽  
Christopher A. Desjardins ◽  
Juan E. Gallo ◽  
Sean Sykes ◽  
...  

ABSTRACT Characterization of genetic differences between lineages of the dimorphic human-pathogenic fungus Paracoccidioides can identify changes linked to important phenotypes and guide the development of new diagnostics and treatments. In this article, we compared genomes of 31 diverse isolates representing the major lineages of Paracoccidioides spp. and completed the first annotated genome sequences for the PS3 and PS4 lineages. We analyzed the population structure and characterized the genetic diversity among the lineages of Paracoccidioides, including a deep split of S1 into two lineages (S1a and S1b), and differentiated S1b, associated with most clinical cases, as the more highly recombining and diverse lineage. In addition, we found patterns of positive selection in surface proteins and secreted enzymes among the lineages, suggesting diversifying mechanisms of pathogenicity and adaptation across this species complex. These genetic differences suggest associations with the geographic range, pathogenicity, and ecological niches of Paracoccidioides lineages. The Paracoccidioides genus includes two species of thermally dimorphic fungi that cause paracoccidioidomycosis, a neglected health-threatening human systemic mycosis endemic to Latin America. To examine the genome evolution and the diversity of Paracoccidioides spp., we conducted whole-genome sequencing of 31 isolates representing the phylogenetic, geographic, and ecological breadth of the genus. These samples included clinical, environmental and laboratory reference strains of the S1, PS2, PS3, and PS4 lineages of P. brasiliensis and also isolates of Paracoccidioides lutzii species. We completed the first annotated genome assemblies for the PS3 and PS4 lineages and found that gene order was highly conserved across the major lineages, with only a few chromosomal rearrangements. Comparing whole-genome assemblies of the major lineages with single-nucleotide polymorphisms (SNPs) predicted from the remaining 26 isolates, we identified a deep split of the S1 lineage into two clades we named S1a and S1b. We found evidence for greater genetic exchange between the S1b lineage and all other lineages; this may reflect the broad geographic range of S1b, which is often sympatric with the remaining, largely geographically isolated lineages. In addition, we found evidence of positive selection for the GP43 and PGA1 antigen genes and genes coding for other secreted proteins and proteases and lineage-specific loss-of-function mutations in cell wall and protease genes; these together may contribute to virulence and host immune response variation among natural isolates of Paracoccidioides spp. These insights into the recent evolutionary events highlight important differences between the lineages that could impact the distribution, pathogenicity, and ecology of Paracoccidioides. IMPORTANCE Characterization of genetic differences between lineages of the dimorphic human-pathogenic fungus Paracoccidioides can identify changes linked to important phenotypes and guide the development of new diagnostics and treatments. In this article, we compared genomes of 31 diverse isolates representing the major lineages of Paracoccidioides spp. and completed the first annotated genome sequences for the PS3 and PS4 lineages. We analyzed the population structure and characterized the genetic diversity among the lineages of Paracoccidioides, including a deep split of S1 into two lineages (S1a and S1b), and differentiated S1b, associated with most clinical cases, as the more highly recombining and diverse lineage. In addition, we found patterns of positive selection in surface proteins and secreted enzymes among the lineages, suggesting diversifying mechanisms of pathogenicity and adaptation across this species complex. These genetic differences suggest associations with the geographic range, pathogenicity, and ecological niches of Paracoccidioides lineages.


Sign in / Sign up

Export Citation Format

Share Document