scholarly journals Effect of HSV-IL12 Loaded Tumor Cell-Based Vaccination in a Mouse Model of High-Grade Neuroblastoma

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
David F. Bauer ◽  
Larisa Pereboeva ◽  
G. Yancey Gillespie ◽  
Gretchen A. Cloud ◽  
Osama Elzafarany ◽  
...  

We designed multimodal tumor vaccine that consists of irradiated tumor cells infected with the oncolytic IL-12-expressing HSV-1 virus, M002. This vaccine was tested against the syngeneic neuroblastoma mouse model Neuro 2a injected into the right caudate nucleus of the immunocompetent A/J mice. Mice were vaccinated via intramuscular injection of multimodal vaccine or uninfected irradiated tumor cells at seven and 14 days after tumor establishment. While there was no survival difference between groups vaccinated with cell-based vaccine applied following tumor injection, a premunition prime/boost vaccination strategy produced a significant survival advantage in both groups and sustained immune response to an intracranial rechallenge of the same tumor. The syngeneic but unrelated H6 hepatocellular tumor cell line grew unrestricted in vaccinated mice, indicative of vaccine-mediated specific immunity to Neuro 2a tumors. Longitudinal analyses of tumor-infiltrating lymphocytes revealed a primary adaptive T cell response involving both CD4+ and CD8+ T cell subsets. Spleen cell mononuclear preparations from vaccinated mice were significantly more cytotoxic to Neuro 2a tumor cells than spleen cells from control mice as demonstrated in a four-hourin vitrocytotoxicity assay. These results strongly suggest that an irradiated whole cell tumor vaccine incorporating IL-12-expressing M002 HSV can produce a durable, specific immunization in a murine model of intracranial tumor.

1991 ◽  
Vol 174 (6) ◽  
pp. 1291-1298 ◽  
Author(s):  
H Hock ◽  
M Dorsch ◽  
T Diamantstein ◽  
T Blankenstein

The potential of interleukin 7 (IL-7) to induce an antitumor response in vivo was analyzed. Therefore, the IL-7 gene was expressed in the plasmacytoma cell line J558L. Although the growth of IL-7-producing cells was not retarded in vitro, the IL-7-producing cells were completely rejected upon injection into mice. Tumor rejection was observed only in syngeneic but not in nude mice. The tumor-suppressive effect could be abolished by the parallel injection of an anti-IL-7 monoclonal antibody. Immunohistochemical analysis revealed IL-7-dependent infiltration of the tumor tissue by CD4+ and CD8+ T lymphocytes, and also type 3 complement receptor-positive (CR3+) cells, predominantly macrophages. Depletion of T cell subsets in tumor-bearing mice showed the absolute dependence of the antitumor response on CD4+ cells, whereas tumor rejection was unaffected by depletion of CD8+ cells. In addition to CD4+ cells, CR3+ cells were also needed for tumor rejection. The antitumor effect of IL-7 was confirmed by expression of the IL-7 gene in a second tumor cell line of different cellular origin. Together, our results demonstrate that a high local IL-7 concentration at the tumor site obtained by tumor cell-targeted gene transfer leads to tumor rejection involving a cellular mechanism that seems to be different from the ones observed in analogous experiments with other cytokines.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A122-A122
Author(s):  
Seth Eisenberg ◽  
Amy Powers ◽  
Jason Lohmueller ◽  
James Luketich ◽  
Rajeev Dhupar ◽  
...  

BackgroundChimeric antigen receptors (CAR) have demonstrated remarkable efficacy in licensing T cells for antitumor responses against hematopoietic malignancies but have had limited success against solid tumors. Macrophages, both archetypic phagocytes and professional antigen presenting cells, may exert profound effector functions which complement adaptive cellular immunity.1 Recently, it was shown that human macrophages engineered to express CARs (CAR-Ms) demonstrated antigen-specific phagocytosis, inhibited solid xenograph tumors, and induced an inflammatory tumor microenvironment boosting antitumor T cell responses.2 Kimura et al. previously completed the first prophylactic cancer vaccine trial based on a non-viral antigen, tumor-associated hypoglycosylated Mucin 1 (MUC1).3 A panel of fully-human affinity-matured MUC1-specific antibodies raised in healthy subjects following immunization was identified from these patients.4 Using these MUC1-specific scFv domains for CAR generation, we have now engineered MUC1-targeting CAR-Ms that may potentially possess reduced off-target specificities.MethodsLentiviral CAR expression vectors containing the scFv domains of three unique hypoglycosylated MUC1-specific antibodies or a CD20-specific antibody, the CD3zeta signaling domain, and CD28 and OX40 co-stimulatory domains were constructed. The human monocyte/macrophage U937, SC, and THP-1 lines were stably transduced and flow-sort purified to generate MUC1- or CD20-specific CAR-Ms. CAR-Ms were differentiated into macrophages via 48 hour PMA treatment, and subsequently evaluated for antigen-specific function against MUC1- and/or CD20-expressing K562, ZR-75-1, and Raji cells or cancer cells isolated from solid lung tumors or malignant pleural effusions. CAR-M phenotype was evaluated by flow cytometry following in vitro differentiation and polarization with conventional ‘M1’ and ‘M2’ stimuli. Phagocytosis and lysosomal processing of phagocytosed cargo were evaluated by fluorescence microscopy of GFP/CellTrace labeled targets or detection of pH-sensitive pHrodo expression following CAR-M and tumor cell co-culture, respectively. Antigen-specific cytokine production was determined via cytometric bead array following co-culture of CAR-Ms with MUC1- or CD20-expressing tumor cells or 100mer MUC1 peptide.ResultsDifferentiated CAR-Ms possessed an inflammatory phenotype expressing IL-8 and CD86 which was further enhanced by IFNgamma or LPS treatment and was resistant to ‘M2’ polarization with conventional stimuli. CAR-Ms exhibited phagocytosis and subsequent lysosomal processing in an antigen-specific manner, with minimal reactivity against tumor cell targets in the absence of the corresponding MUC1 or CD20 antigen. MUC1-specific CAR-Ms stimulated with MUC1 peptide or MUC1+ tumor cells secreted robust levels of pro-inflammatory IL-8, TNFa, and IL-1beta, but not immunosuppressive IL-10.ConclusionsMUC1-targeting CAR-Ms exert potent tumor-restricted effector function in vitro and may provide a novel treatment strategy either alone or in potential synergistic combination with T cell-mediated immunotherapies.AcknowledgementsThe authors would like to thank Dr. Olivera J. Finn for generously providing reagents and guidance and Dr. Michael T. Lotze for his mentorship. This study was supported by funding from the University of Pittsburgh’s Department of Cardiothoracic Surgery to ACS and RD.ReferencesWilliams CB, Yeh ES, Soloff AC. Tumor-associated macrophages: unwitting accomplices in breast cancer malignancy. Npj Breast Cancer [Internet]. Breast Cancer Research Foundation/Macmillan Publishers Limited; 2016;2:15025. Available from: http://dx.doi.org/10.1038/npjbcancer.2015.25Klichinsky M, Ruella M, Shestova O, Lu XM, Best A, Zeeman M, et al. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat Biotechnol 2020;38:947–53.Kimura T, McKolanis JR, Dzubinski LA, Islam K, Potter DM, Salazar AM, et al. MUC1 Vaccine for Individuals with Advanced Adenoma of the Colon: A Cancer Immunoprevention Feasibility Study. Cancer Prev Res [Internet] 2013;6:18–26. Available from: http://cancerpreventionresearch.aacrjournals.org/content/6/1/18.abstractLohmueller JJ, Sato S, Popova L, Chu IM, Tucker MA, Barberena R, et al. Antibodies elicited by the first non-viral prophylactic cancer vaccine show tumor-specificity and immunotherapeutic potential. Sci Rep 2016;6:31740.Ethics ApprovalThe study was approved by the University of Pittsburgh’s Institutional Review Board approval number CR19120172-005.


Blood ◽  
1989 ◽  
Vol 74 (3) ◽  
pp. 1152-1158 ◽  
Author(s):  
FW Preijers ◽  
T De Witte ◽  
JM Wessels ◽  
GC De Gast ◽  
E Van Leeuwen ◽  
...  

Abstract Seven patients with high-risk acute T-cell lymphoblastic leukemia (T- ALL) and six with T cell lymphoma (T-LL) were treated with autologous bone marrow transplantation (ABMT) after in vitro purging of their bone marrow with WT1 (CD7)-ricin A-chain immunotoxin. CD7 expression on the tumor cells showed large variations between the individual patients and was highly related to the specific cytotoxicity of WT1-ricin A. Incubation of bone marrow with up to 10(-8)mol/L WT1-ricin A in the presence of 6 mmol/L NH4Cl did not compromise the growth potential of the hematopoietic progenitors CFU-GM, CFU-GEMM, and BFU-E. Hematologic engraftment (greater than 10(9) leukocytes/L) occurred within a normal time period (median, 17 days). Seven patients are alive and in complete remission (CR) at 48+, 44+, 40+, 26+, 11+, 7+, and 6+ months after ABMT. Four patients relapsed within 6 months after ABMT. Two of them had the lowest CD7 expression on their tumor cells, the other two were transplanted in CR2 and CR3. Two patients died from transplantation related infections. The immunologic reconstitution was delayed, although the numbers of T cells reached normal levels within 1 month. The number of CD7+ cells remained low up to 1 year after transplantation. The T4/T8-ratio was decreased for at least 6 months. The T-cell response to mitogens recovered to normal levels after 1 year. This study shows that ABMT with WT1-ricin A purged bone marrow in high-risk T-cell malignancies results in a complete hematopoietic and a delayed immunologic reconstitution. The actuarial relapse free survival is 61% at 3 years.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1727-1727
Author(s):  
Manuel Schmidt ◽  
Javier de Cristobal ◽  
Astrid Sander ◽  
Bernadette Brzezicha ◽  
Sven A. König Merediz ◽  
...  

Abstract Cytosine-guanine (CpG) motifs containing oligonucleotides (ODN) are commonly used for immunomodulatory purpose in cancer therapy and for the treatment of allergic diseases since they resemble bacterial DNA and serve as “danger signals”. These CpG-ODNs promote predominately a TH1-response with secretion of IL-12 and IFN-γ, In addition their broad potential includes activation of B-cell proliferation, monocyte stimulation and secretion of IgM and IL-6, and stimulation of plasmacytoid DC to produce IFN-α/-β and thus γδT-cells and NK-cells to express CD69 and secrete IFN-γ. Usually phosphorothioate (PS) modifications are to enhance the stability, but these are leading to several side-effects, like severe organ enlargements, morphological changes and immunosuppression in mice. We designed immunomodulatory molecules based on short covalently-closed dumbbell-like structures (dSLIM) to stabilize the DNA without the otherwise necessary PS-modification. To evaluate the anti-tumor effect of the dSLIM molecules we developed an in vitro anti-tumor assay. This assay uses supernatant from dSLIM-activated human PBMCs for incubation with tumor cells in vitro. We observed increased apoptosis and necrosis of the HT-29 tumor cell line after incubation with supernatant from dSLIM-treated PBMC which was significantly higher than the effect of supernatant from non-treated PBMC. In addition, supernatant from dSLIM-treated PBMC increased the expression of HLA-ABC on the tumor cells, a pre-requisite for tumor cell recognition by the immune system. These effects were confirmed with human HEK293 and murine Renca cell lines. Analyzing the effect with neutralizing antibodies to various apoptosis-related cytokines, we observed a crucial role of IFN-γ but not IFN-α or TNFα. To investigate the anti-tumor effects of dSLIM in vivo, we employed a SKH1 murine model which is prone to spontaneous development of papillomas. Using chemicals for initiation and weekly promotion of de novo papilloma development we compared groups of weekly s.c. or i.p. dSLIM injections, respectively, with the PBS control group. The number of papilloma developing mice was significantly lower in the dSLIM groups and the total number of papillomas on all mice was reduced by approximately 50%. In conclusion, we showed that dSLIM immunomodulators exhibit potent anti-tumor effects in vitro and in vivo.


Blood ◽  
1989 ◽  
Vol 74 (3) ◽  
pp. 1152-1158
Author(s):  
FW Preijers ◽  
T De Witte ◽  
JM Wessels ◽  
GC De Gast ◽  
E Van Leeuwen ◽  
...  

Seven patients with high-risk acute T-cell lymphoblastic leukemia (T- ALL) and six with T cell lymphoma (T-LL) were treated with autologous bone marrow transplantation (ABMT) after in vitro purging of their bone marrow with WT1 (CD7)-ricin A-chain immunotoxin. CD7 expression on the tumor cells showed large variations between the individual patients and was highly related to the specific cytotoxicity of WT1-ricin A. Incubation of bone marrow with up to 10(-8)mol/L WT1-ricin A in the presence of 6 mmol/L NH4Cl did not compromise the growth potential of the hematopoietic progenitors CFU-GM, CFU-GEMM, and BFU-E. Hematologic engraftment (greater than 10(9) leukocytes/L) occurred within a normal time period (median, 17 days). Seven patients are alive and in complete remission (CR) at 48+, 44+, 40+, 26+, 11+, 7+, and 6+ months after ABMT. Four patients relapsed within 6 months after ABMT. Two of them had the lowest CD7 expression on their tumor cells, the other two were transplanted in CR2 and CR3. Two patients died from transplantation related infections. The immunologic reconstitution was delayed, although the numbers of T cells reached normal levels within 1 month. The number of CD7+ cells remained low up to 1 year after transplantation. The T4/T8-ratio was decreased for at least 6 months. The T-cell response to mitogens recovered to normal levels after 1 year. This study shows that ABMT with WT1-ricin A purged bone marrow in high-risk T-cell malignancies results in a complete hematopoietic and a delayed immunologic reconstitution. The actuarial relapse free survival is 61% at 3 years.


2017 ◽  
Vol 35 (7_suppl) ◽  
pp. 150-150
Author(s):  
Sergei Kusmartsev ◽  
Johaness Vieweg ◽  
Victor Prima

150 Background: NKG2D is a lectin-like type 2 transmembrane receptor that expressed by natural killer cells and some T cell subsets. Stimulation of NKG2D receptor with specific agonistic ligands produces activating signals through signaling adaptor protein DAP10 leading to the enhanced cytokine production, proliferation, and cytotoxicity against tumor cells. There is strong evidence that NKG2D ligands are expressed in many human tumors, including melanoma, leukemia, myeloma, glioma, and carcinomas of the prostate, breast, lung, and colon. Recent studies also demonstrated that T cells bearing chimeric antigen receptor (CAR) NKG2D linked to CD3ζ (zeta) chain produce marked in vitro and in vivo anti-tumor effects. The aim of current study was to determine whether human T cells bearing chimeric antigen receptor (CAR) NKGD2 linked to CD3ε (epsilon) chain could be activated by the NKG2D-specific stimulation and able to kill human cancer cells. Given the important role of CD3ε in activation and survival of T cells, we hypothesized that NKG2D-CDε-bearing T cells could exert strong in vitro and in vivo anti-tumor effects. Methods: NKG2D CAR was produced by linking human NKG2D to DAP10 and the cytoplasmic portion of the CD3ε chain. Original full-length human cDNA clones were obtained from NIH Mammalian Gene Collection (MGC). Functional domain analysis and oligonucleotide design in the in-Fusion system of DNA cloning (Clontech) was used to generate the retroviral expression constructs. Results: Human PBMC-derived T cells were retrovirally transduced with newly generated NKG2D-CD3ε CAR DNA construct. These NKG2D CAR-expressing human T cells responded to NKG2D-specific activation by producing IFN-γ and exhibited significant cellular cytotoxicity against human tumor cells in vitro. In vivo studies demonstrated that NKG2D-CD3ε-bearing cells are capable of inhibiting growth of DU-145 human prostate cancer in the immunodeficient mice. Conclusions: Collectively, our data indicate the feasibility of developing chimeric antigen receptor NKG2D-CD3ε for T cells and suggest that adoptive transfer of T cells bearing NKG2D-CD3ε CAR could be potentially effective for immunotherapy of cancer patients.


2018 ◽  
Vol 36 (4_suppl) ◽  
pp. 704-704
Author(s):  
Bradley A. Krasnick ◽  
Ye Bi ◽  
Maddy Goedegebuure ◽  
Peter S. Goedegebuure ◽  
Venktesh S. Shirure ◽  
...  

704 Background: In vitro models of cancer have led to significant therapeutic advances. Despite the widespread use of in vitro tissue culture, the ability to directly evaluate human biology is limited by the inability to model the complex, 3D nature of the TME. We introduce a novel, microfluidic-based system of 3D human micro-tumors perfused with a network of human micro-vessels which could overcome the shortcomings of current in vitro systems. Methods: The micro-device was created by casting polydimethylsiloxane (PDMS) onto master molds, which are then bonded to a flat PDMS sheet using air plasma. Normal human lung fibroblasts (NHLF) and GFP labelled endothelial colony forming cell derived endothelial cells (EC-FCECs) were loaded in a fibrin gel at a 1:2 ratio into the central tissue chamber. Media was introduced through the microfluidic lines. The vascular network was developed with complete EGM2 media under nominal interstitial flow. Colorectal tumor cell lines labelled with mCherry were loaded to the side chambers on the seventh day after NHLF and EC loading. Bevacizumab or TGF- β were added on the second day after tumor cell loading. Results: Micro-vessels formed in the central chamber in 5-7 days after loading. The vessels were perfused with 70KDa fluorescent (red) dextran, and displayed intact vessel wall barrier. A suspension of a colorectal tumor cell line was loaded into the device side chambers, next to a fully developed vasculature. The tumor cells drove angiogenesis into the side chambers, and at the same time tumor began to migrate into the central chamber and within the vessel lumen. The angiogenesis induced by tumor cells can be pharmacologically inhibited, and the migration/ intravasation of tumor cells can be stimulated by TGF-β. Conclusions: Our novel micro-device system can be used as a functional in vitro system that can model the tumor micro-environment. This system has the advantage over current in vitro and in vivo systems in that it is high-throughput, rapid, cost-effective, and recreates many features of the 3D TME. We are currently expanding the platform to incorporate immune cells and designing a completely autologous system to test cancer immunotherapeutics.


2001 ◽  
Vol 75 (5) ◽  
pp. 2107-2118 ◽  
Author(s):  
Ting Liu ◽  
Thomas J. Chambers

ABSTRACT Viral encephalitis caused by neuroadapted yellow fever 17D virus (PYF) was studied in parental and gamma interferon (IFN-γ)-deficient (IFN-γ knockout [GKO]) C57BL/6 mice. The T-cell responses which enter the brain during acute fatal encephalitis of nonimmunized mice, as well as nonfatal encephalitis of immunized mice, were characterized for relative proportions of CD4+ and CD8+cells, their proliferative responses, and antigen-specific expression of cytokines during stimulation in vitro. Unimmunized mice accumulated only low levels of T cells within the brain during fatal disease, whereas the brains of immunized mice contained higher levels of both T-cell subsets in response to challenge, with CD8+ cells increased relative to the CD4+ subset. The presence of T cells correlated with the time at which virus was cleared from the central nervous system in both parental and GKO mice. Lymphocytes isolated from the brains of challenged immunized mice failed to proliferate in vitro in response to T-cell mitogens or viral antigens; however, IFN-γ, interleukin 4 (IL-4), and, to a lesser extent, IL-2 were detectable after stimulation. The levels of IFN-γ, but not IL-2 or IL-4, were augmented in response to viral antigen, and this specificity was detectable in the CD4+ compartment. When tested for the ability to survive both immunization and challenge with PYF virus, GKO and CD8 knockout mice did not differ from parental mice (80 to 85% survival), although GKO mice exhibited a defect in virus clearance. In contrast, CD4 knockout and Igh-6 mice were unable to resist challenge. The data implicate antibody in conjunction with CD4+ lymphocytes bearing a Th1 phenotype as the critical factors involved in virus clearance in this model.


Leukemia ◽  
2004 ◽  
Vol 18 (11) ◽  
pp. 1810-1815 ◽  
Author(s):  
P Kokhaei ◽  
A Choudhury ◽  
R Mahdian ◽  
J Lundin ◽  
A Moshfegh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document