scholarly journals Human Embryonic Stem Cells: A Model for the Study of Neural Development and Neurological Diseases

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Piya Prajumwongs ◽  
Oratai Weeranantanapan ◽  
Thiranut Jaroonwitchawan ◽  
Parinya Noisa

Although the mechanism of neurogenesis has been well documented in other organisms, there might be fundamental differences between human and those species referring to species-specific context. Based on principles learned from other systems, it is found that the signaling pathways required for neural induction and specification of human embryonic stem cells (hESCs) recapitulated those in the early embryo developmentin vivoat certain degree. This underscores the usefulness of hESCs in understanding early human neural development and reinforces the need to integrate the principles of developmental biology and hESC biology for an efficient neural differentiation.

PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0126590 ◽  
Author(s):  
Valentina Poletti ◽  
Alessia Delli Carri ◽  
Guidantonio Malagoli Tagliazucchi ◽  
Andrea Faedo ◽  
Luca Petiti ◽  
...  

2007 ◽  
pp. 121-147
Author(s):  
Scott A. Noggle ◽  
Francesca M. Spagnoli ◽  
Ali H. Brivanlou

2002 ◽  
Vol 2 ◽  
pp. 1147-1166 ◽  
Author(s):  
Sally A. Moody ◽  
Hyun-Soo Je

The promise of stem cell therapy is expected to greatly benefit the treatment of neurodegenerative diseases. An underlying biological reason for the progressive functional losses associated with these diseases is the extremely low natural rate of self-repair in the nervous system. Although the mature CNS harbors a limited number of self-renewing stem cells, these make a significant contribution to only a few areas of brain. Therefore, it is particularly important to understand how to manipulate embryonic stem cells and adult neural stem cells so their descendants can repopulate and functionally repair damaged brain regions. A large knowledge base has been gathered about the normal processes of neural development. The time has come for this information to be applied to the problems of obtaining sufficient, neurally committed stem cells for clinical use. In this article we review the process of neural induction, by which the embryonic ectodermal cells are directed to form the neural plate, and the process of neural�fate stabilization, by which neural plate cells expand in number and consolidate their neural fate. We will present the current knowledge of the transcription factors and signaling molecules that are known to be involved in these processes. We will discuss how these factors may be relevant to manipulating embryonic stem cells to express a neural fate and to produce large numbers of neurally committed, yet undifferentiated, stem cells for transplantation therapies.


2009 ◽  
Vol 21 (9) ◽  
pp. 19
Author(s):  
L. Ye ◽  
R. Mayberry ◽  
E. Stanley ◽  
A. Elefanty ◽  
C. Gargett

The endometrium undergoes cyclic regeneration. This regeneration has been attributed to adult stem progenitor cells and developmental mechanisms [1, 2]. A better understanding of human endometrial development may shed light on the mechanisms involved in endometrial regeneration and on early origins of adult endometrial disease. The lack of human fetal endometrial tissue has impeded research in early human endometrial development. We hypothesized that directed differentiation of human embryonic stem cells (hESC) to human endometrial tissue by neonatal mouse uterine mesenchyme represents a novel system to study early development of human endometrium. Recent studies have shown that the neonatal mouse uterine mesenchyme is extremely inductive and undergoes reciprocal signalling with human endometrial epithelial cells [3]. Our aim is to establish a xenograft tissue recombination protocol based on a model for human prostate tissue differentiation using hESC [4]. Our method involved formation of embryoid body (EB) with GFP labelled hESC (ENVY) [5] for recombination with 2x0.5mm pieces of epithelial-free uterine mesenchyme from postnatal day 1 mice. Upon fusion in culture, the recombinant tissue is grafted under the kidney capsule of NOD/SCID mice for 4-12 weeks and monitored by in-vivo imaging. Immunohistochemical analysis of recombinant grafts 4 weeks post transplantation (n=4) revealed immature CK8+CK18+Hoxa10+ human epithelial cells surrounded by mouse mesenchymal cells suggesting differentiation of hESC to epithelial cells possibly of endometrial lineage. The ER+PR+SMA+Hoxa10+ mouse mesenchymal cells surrounding human glands differentiated into SMA+ cells possibly via reciprocal signalling from human epithelial cells. At 8 weeks, we found several CK18+/Hoxa10+ human glands co-expressing CA125. These glands are supported by Hoxa10+ human stromal cells. Further experiments are underway to induce the expression of ER and PR in Hoxa10+ epithelial cells which will be crucial in revealing their endometrial lineage.


2004 ◽  
Vol 10 (9-10) ◽  
pp. 1518-1525 ◽  
Author(s):  
Robert C. Bielby ◽  
Aldo R. Boccaccini ◽  
Julia M. Polak ◽  
Lee D.K. Buttery

Blood ◽  
2009 ◽  
Vol 113 (24) ◽  
pp. 6094-6101 ◽  
Author(s):  
Petter S. Woll ◽  
Bartosz Grzywacz ◽  
Xinghui Tian ◽  
Rebecca K. Marcus ◽  
David A. Knorr ◽  
...  

Abstract Natural killer (NK) cells serve as important effectors for antitumor immunity, and CD56+CD45+ NK cells can be routinely derived from human embryonic stem cells (hESCs). However, little is know about the ability of hESC-derived NK cells to mediate an effective in vivo antitumor response. Using bioluminescent imaging, we now demonstrate that H9 line hESC-derived NK cells mediate effective clearance of human tumor cells in vivo. In addition to increased in vitro killing of diverse tumor targets, the in vivo tumor clearance by H9 hESC-derived NK cells was more effective compared with NK cells derived from umbilical cord blood (UCB). Phenotypic analysis demonstrates the hESC-derived NK cells are uniformly CD94+CD117low/−, an NK-cell population characterized by potent cytolytic activity and thus more competent to mediate tumor clearance. These studies demonstrate that hESCs provide an important model to study human lymphocyte development and may serve as a novel source for antitumor immunotherapy.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1527-1527
Author(s):  
Frank Timmermans ◽  
Imke Velghe ◽  
Lieve Van Walleghem ◽  
Magda De Smedt ◽  
Stefanie Van Coppernolle ◽  
...  

Abstract Background: Human embryonic stem cells (hESC) are derived from early stage blastocysts and are characterized by the ability to both self-renew and to generate differentiated functional cell types. One of the major challenges in the field of hESC research, is to set up a culture system that drives hESC down a particular lineage fate. To date, studies reporting hematopoietic development have not provided evidence on the differentiation capacity of hESC into T lineage cells in vitro. Material and Methods: hESC line H1 (National Institutes of Health [NIH] code: WA01), Wisconson, Madison, USA) was used (Passage 30–60) in all experiments. The hESC line was kept in an undifferentiated state on MEFs as previously described. OP9 cells and OP9 cells that express high levels of the Notch ligand Delta-like 1 (OP9-DLL1, a gift from J. C. Zuniga-Pflücker, University of Toronto, Canada) were cultured as previously described in MEM-α with 20 % FCS. Results: Our data show that T cells can be generated in vitro from hESC in a robust and highly reproducible manner using the sequential exposure of hESC to the murine OP9 cell line and OP9-DLL1. On OP9 stromal layers, a CD34highCD43dim hematopoietic precursor population is generated that is confined to vascular-like structures, reminiscent of blood islands that emerge during in vivo embryonic development. This precursor population becomes T lineage committed when exposed to OP9-DLL1 monolayers, passing sequentially through a CD34+CD7+ phenotype, a CD4+CD8+ double positive intermediate stage and eventually differentiates into a mature T cells. Polyclonal T cells are generated, cell receptor (TCR) alpha-beta and TCRgamma-delta which are functional based on proliferative capacity and production of cytokines after TCR crosslinking. Conclusion: We show that mature and functional T cells can be generated from hESC using well defined in vitro conditions. This protocol in combination with the recently described induced pluripotent cells may find clinical applicability in tumor immunology.


Sign in / Sign up

Export Citation Format

Share Document