scholarly journals A Game for Energy-Aware Allocation of Virtualized Network Functions

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Roberto Bruschi ◽  
Alessandro Carrega ◽  
Franco Davoli

Network Functions Virtualization (NFV) is a network architecture concept where network functionality is virtualized and separated into multiple building blocks that may connect or be chained together to implement the required services. The main advantages consist of an increase in network flexibility and scalability. Indeed, each part of the service chain can be allocated and reallocated at runtime depending on demand. In this paper, we present and evaluate an energy-aware Game-Theory-based solution for resource allocation of Virtualized Network Functions (VNFs) within NFV environments. We consider each VNF as a player of the problem that competes for the physical network node capacity pool, seeking the minimization of individual cost functions. The physical network nodes dynamically adjust their processing capacity according to the incoming workload, by means of an Adaptive Rate (AR) strategy that aims at minimizing the product of energy consumption and processing delay. On the basis of the result of the nodes’ AR strategy, the VNFs’ resource sharing costs assume a polynomial form in the workflows, which admits a unique Nash Equilibrium (NE). We examine the effect of different (unconstrained and constrained) forms of the nodes’ optimization problem on the equilibrium and compare the power consumption and delay achieved with energy-aware and non-energy-aware strategy profiles.

Author(s):  
Isabel Borges

The combination of Software-Defined Networking (SDN) with Network Functions Virtualization (NFV) approaches is gaining momentum in the Industry as a new way of implementing, managing and controlling telecommunications networks. This chapter aims to go through SDN and lightly over NFV, presenting main characteristics and the standardization work on that technologies. SDN enables programming networks together with the ability to adapt to applications requirements and network dynamics. NFV aims at virtualizing network services by merging several network equipment types onto standard Information Technologies (IT) high volume virtualization technology (switches, servers and storage) located either in data centres, customer premises or network nodes. SDN and NFV interworking ambition is to bring on-demand resource provisioning, resource elasticity, among others with a centralized view of the overall network, able to automatically and dynamically honor service requirements.


Author(s):  
Lalit Pandey

This chapter is focused on the traditional network architecture limitations with NFV benefits. Discussion of NFV architecture and framework as well as management and orchestration has been discussed in this chapter. Cisco VNF portfolio and virtual network functions implementation is included with software implementation of the architecture of NFV (network function virtualization). Management and orchestration functional layers as per ETSI standard. The challenges in NFV implementation is also a concern today, which is a part of this chapter.


Author(s):  
Naveen Chilamkurti ◽  
Sohail Jabbar ◽  
Abid Ali Minhas

Network layer functionalists are of core importance in the communication process and so the routing with energy aware trait is indispensable for improved network performance and increased network lifetime. Designing of protocol at this under discussion layer must consider the aforementioned factors especially for energy aware routing process. In wireless sensor networks there may be hundreds or thousands of sensor nodes communicating with each other and with the base station, which consumes more energy in exchanging data and information with the additive issues of unbalanced load and intolerable faults. Two main types of network architectures for sensed data dissemination from source to destination exist in the literature; Flat network architecture, clustered network architecture. In flat architecture based networks, uniformity can be seen since all the network nodes work in a same mode and generally do not have any distinguished role.


2020 ◽  
pp. 372-399
Author(s):  
Naveen Chilamkurti ◽  
Sohail Jabbar ◽  
Abid Ali Minhas

Network layer functionalists are of core importance in the communication process and so the routing with energy aware trait is indispensable for improved network performance and increased network lifetime. Designing of protocol at this under discussion layer must consider the aforementioned factors especially for energy aware routing process. In wireless sensor networks there may be hundreds or thousands of sensor nodes communicating with each other and with the base station, which consumes more energy in exchanging data and information with the additive issues of unbalanced load and intolerable faults. Two main types of network architectures for sensed data dissemination from source to destination exist in the literature; Flat network architecture, clustered network architecture. In flat architecture based networks, uniformity can be seen since all the network nodes work in a same mode and generally do not have any distinguished role.


Author(s):  
Eric Debeau ◽  
Veronica Quintuna-Rodriguez

The ever-increasing complexity of networks and services advocates for the introduction of automation techniques to facilitate the design, the delivery, and the operation of such networks and services. The emergence of both network function virtualization (NFV) and software-defined networks (SDN) enable network flexibility and adaptability which open the door to on-demand services requiring automation. In aim of holding the increasing number of customized services and the evolved capabilities of public networks, the open network automation platform (ONAP), which is in open source, particularly addresses automation techniques while enabling dynamic orchestration, optimal resource allocation capabilities, and end-to-end service lifecycle management. This chapter addresses the key ONAP features that can be used by industrials and operators to automatically manage and orchestrate a wide set of services ranging from elementary network functions (e.g., firewalls) to more complex services (e.g., 5G network slices).


2013 ◽  
Vol 22 (06) ◽  
pp. 1350045 ◽  
Author(s):  
MACIEJ WIELGOSZ ◽  
MAURITZ PANGGABEAN ◽  
JIANG WANG ◽  
LEIF ARNE RØNNINGEN

The background that underlies this work is the envisioned real-time tele-immersive collaboration system for the future that supports delay-sensitive applications involving participants from remote places via their collaboration spaces (CSs). The end-to-end delay as high as 20 ms is required for good synchronization of such applications, for example collaborative dancing and remote conducting of choir. It is much lower than that facilitated by existing teleconference systems. A novel network architecture with delay guarantee, namely Distributed Multimedia Plays (DMP), has been proposed and designed to realize the vision. The maximum low latency is guaranteed because DMP network nodes can drop DMP packets of multimedia data from the CSs due to instantaneous traffic condition. Besides ultrafast processing time, modularity, and scalability must be taken into account in hardware design and implementation of the nodes for seamless incorporation of the modules. These lead us to employing field-programmable gate array (FPGA) due to its substantial computational power and flexibility. This paper presents an FPGA-based platform for the design and implementation of DMP network nodes. It provides a detailed introduction to the platform architecture and the simulation-implementation environment for the design. The modularity of the implemented node is shown by addressing three important modules for packet dropping, 3D warping, and image transform. Our compact implementation of the network node on Xilinx Virtex-6 ML605 mostly consumes very small amount of available resources. Moreover the elementary operations on our implementation takes (much) less than 5 μs as desired to meet the low-latency requirement.


2019 ◽  
Vol 116 (16) ◽  
pp. 8018-8027 ◽  
Author(s):  
Joel D. Hahn ◽  
Olaf Sporns ◽  
Alan G. Watts ◽  
Larry W. Swanson

Control of multiple life-critical physiological and behavioral functions requires the hypothalamus. Here, we provide a comprehensive description and rigorous analysis of mammalian intrahypothalamic network architecture. To achieve this at the gray matter region (macroscale) level, macroscale connection (macroconnection) data for the rat hypothalamus were extracted from the primary literature. The dataset indicated the existence of 7,982 (of 16,770 possible) intrahypothalamic macroconnections. Network analysis revealed that the intrahypothalamic macroconnection network (its macroscale subconnectome) is divided into two identical top-level subsystems (or subnetworks), each composed of two nested second-level subsystems. At the top-level, this suggests a deeply integrated network; however, regional grouping of the two second-level subsystems suggested a partial separation between control of physiological functions and behavioral functions. Furthermore, inclusion of four candidate hubs (dominant network nodes) in the second-level subsystem that is associated prominently with physiological control suggests network primacy with respect to this function. In addition, comparison of network analysis with expression of gene markers associated with inhibitory (GAD65) and excitatory (VGLUT2) neurotransmission revealed a significant positive correlation between measures of network centrality (dominance) and the inhibitory marker. We discuss these results in relation to previous understandings of hypothalamic organization and provide, and selectively interrogate, an updated hypothalamus structure–function network model to encourage future hypothesis-driven investigations of identified hypothalamic subsystems.


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4895
Author(s):  
Maurício R. Silva ◽  
Elitelma S. Souza ◽  
Pablo J. Alsina ◽  
Deyvid L. Leite ◽  
Mateus R. Morais ◽  
...  

This paper presents a communication network for a squadron of unmanned aerial vehicles (UAVs) to be used in the scanning rocket impact area for Barreira do Inferno Launch Center—CLBI (Rio Grande do Norte, Brazil), aiming at detecting intruder boats. The main features of communication networks associated with multi-UAV systems are presented. This system sends information through Wireless Sensor Networks (WSN). After comparing and analyzing area scanning strategies, it presents the specification of a data communication network architecture for a squadron of UAVs within a sensor network using XBee Pro 900HP S3B modules. A brief description is made about the initial information from the construction of the system. The embedded hardware and the design procedure of a dedicated communication antenna to the XBee modules are presented. In order to evaluate the performance of the proposed architecture in terms of robustness and reliability, a set of experimental tests in different communication scenarios is carried out. Network management software is employed to measure the throughput, packet loss and other performance indicators in the communication links between the different network nodes. Experimental results allow verifying the quality and performance of the network nodes, as well as the reliability of the communication links, assessing signal received quality, range and latency.


2019 ◽  
Vol 2019 ◽  
pp. 1-18
Author(s):  
Tommaso Muciaccia ◽  
Vittorio M. N. Passaro

Today, telecommunication operators are facing an epochal challenge due to the need of higher reconfigurability, flexibility, and dynamicity for their networks. In the latest years, this necessity has been addressed by the introduction of Software-Defined Networking (SDN), mainly in the fields of data centers and core networks. The present work introduces a unified metro-access optical network architecture based on some features inspired by SDN models. The essential aim is to enable bandwidth shared among different passive optical networks (PONs) in order to achieve higher adaptability to increasingly migratory and volatile traffic patterns. Even if the present work is mainly focused on the architecture, several hints for specific implementation of the network nodes are detailed as well in order to demonstrate its feasibility. Several numerical simulations have been performed to assess the performance of the proposed solution both about physical effects and about quality of service. Bit error ratio degradation due to physical impairments has been evaluated and traffic congestion has been estimated in terms of burst loss probability and average throughput.


Sign in / Sign up

Export Citation Format

Share Document