Introducing Automation in Service Delivery Procedures

Author(s):  
Isabel Borges

The combination of Software-Defined Networking (SDN) with Network Functions Virtualization (NFV) approaches is gaining momentum in the Industry as a new way of implementing, managing and controlling telecommunications networks. This chapter aims to go through SDN and lightly over NFV, presenting main characteristics and the standardization work on that technologies. SDN enables programming networks together with the ability to adapt to applications requirements and network dynamics. NFV aims at virtualizing network services by merging several network equipment types onto standard Information Technologies (IT) high volume virtualization technology (switches, servers and storage) located either in data centres, customer premises or network nodes. SDN and NFV interworking ambition is to bring on-demand resource provisioning, resource elasticity, among others with a centralized view of the overall network, able to automatically and dynamically honor service requirements.

Author(s):  
Irina Strelkovskay ◽  
Irina Solovskaya ◽  
Anastasija Makoganjuk ◽  
Nikolaj Severin

The problem of forecasting self-similar traffic, which is characterized by a considerable number of ripples and the property of long-term dependence, is considered. It is proposed to use the method of spline extrapolation using linear and cubic splines. The results of self-similar traffic prediction were obtained, which will allow to predict the necessary size of the buffer devices of the network nodes in order to avoid congestion in the network and exceed the normative values ​​of QoS quality characteristics. The solution of the problem of self-similar traffic forecasting obtained with the Simulink software package in Matlab environment is considered. A method of extrapolation based on spline functions is developed. The proposed method has several advantages over the known methods, first of all, it is sufficient ease of implementation, low resource intensity and accuracy of prediction, which can be enhanced by the use of quadratic or cubic interpolation spline functions. Using the method of spline extrapolation, the results of self-similar traffic prediction were obtained, which will allow to predict the required volume of buffer devices, thereby avoiding network congestion and exceeding the normative values ​​of QoS quality characteristics. Given that self-similar traffic is characterized by the presence of "bursts" and a long-term dependence between the moments of receipt of applications in this study, given predetermined data to improve the prediction accuracy, it is possible to use extrapolation based on wavelet functions, the so-called wavelet-extrapolation method. Based on the results of traffic forecasting, taking into account the maximum values ​​of network node traffic, you can give practical guidance on how traffic is redistributed across the network. This will balance the load of network objects and increase the efficiency of network equipment.


2021 ◽  
Author(s):  
Thomas Weripuo Gyeera

<div>The National Institute of Standards and Technology defines the fundamental characteristics of cloud computing as: on-demand computing, offered via the network, using pooled resources, with rapid elastic scaling and metered charging. The rapid dynamic allocation and release of resources on demand to meet heterogeneous computing needs is particularly challenging for data centres, which process a huge amount of data characterised by its high volume, velocity, variety and veracity (4Vs model). Data centres seek to regulate this by monitoring and adaptation, typically reacting to service failures after the fact. We present a real cloud test bed with the capabilities of proactively monitoring and gathering cloud resource information for making predictions and forecasts. This contrasts with the state-of-the-art reactive monitoring of cloud data centres. We argue that the behavioural patterns and Key Performance Indicators (KPIs) characterizing virtualized servers, networks, and database applications can best be studied and analysed with predictive models. Specifically, we applied the Boosted Decision Tree machine learning algorithm in making future predictions on the KPIs of a cloud server and virtual infrastructure network, yielding an R-Square of 0.9991 at a 0.2 learning rate. This predictive framework is beneficial for making short- and long-term predictions for cloud resources.</div>


Author(s):  
Liydmila KYSH

In the conditions of modern market economy the role of logistic grows constantly. Speed of товаропотоків and volume of the attracted money depends on the effective planning and co-ordination of logistic chains of delivery. The logistic providing foresees a complex from the management of deliveries chains, which is used for satisfaction of necessities of clients by planning, control and introduction of the effective moving and storage of corresponding information, commodities and services from the place of production to the place of consumption. A management logistic helps companies to decrease expenses and promote the level of service of customers. As a rule, large retail dealers or producers own basic parts of the logistic network. Most companies, however, pass to this function the mediators. To the number of basic factors of rapid introduction of logistic in a world economy belong: - dynamic development of information technologies; - globalization of markets; - structural changes are in organization of business; - philosophy of management quality. Modern development of logistic status is characterized by a few tendencies: by computerization of logistic operations, expansion of containertraffics, minimization of charges, related to transporting, storage, repacking, custom registration; by the increase of demand on high-quality logistic services; diminishing of charges of producers due to optimization of logistic chains. Negative factors which influence on market of logistic services development in Ukraine is dissatisfaction by demand on a ware-house economy and a transport infrastructure is developed not enough, absence of skilled shots in logistic. Transformation of logistic infrastructure must be based on approach of the systems, which enables to ground strategy of her development and working out in detail in perspective and current plans. The basic result of optimization of logistic infrastructure must be minimization of charges on maintenance of materially-material streams. Perspective direction of further researches is a study of directions of optimization of logistic charges during organization of international transportations.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Dashmeet Anand, Hariharakumar Narasimhakumar, Et al.

Service Function Chaining (SFC) is a capability that links multiple network functions to deploy end-to-end network services. By virtualizing these network functions also known as Virtual Network Functions (VNFs), the dependency on traditional hardware can be removed, hence making it easier to deploy dynamic service chains over the cloud environment. Before implementing service chains over a large scale, it is necessary to understand the performance overhead created by each VNF owing to their varied characteristics. This research paper attempts to gain insights on the server and networking overhead encountered when a service chain is deployed on a cloud orchestration tool such as OpenStack. Specifically, this research will measure the CPU utilization, RAM usage and System Load of the server hosting OpenStack. Each VNF will be monitored for its varying performance parameters when subjected to different kinds of traffic. Our focus lies on acquiring performance parameters of the entire system for different service chains and compare throughput, latency, and VNF statistics of the virtual network. Insights obtained from this research can be used in the industry to achieve optimum performance of hardware and network resources while deploying service chains.


Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 749
Author(s):  
Hammad Zafar ◽  
Ziaul Haq Abbas ◽  
Ghulam Abbas ◽  
Fazal Muhammad ◽  
Muhammad Tufail ◽  
...  

Named data networking (NDN) is a revolutionary approach to cater for modern and future Internet usage trends. The advancements in web services, social networks and cloud computing have shifted Internet utilization towards information delivery. Information-centric networking (ICN) enables content-awareness in the network layer and adopts name-based routing through the NDN architecture. Data delivery in NDN is receiver-driven pull-based and governed by requests (interests) sent out by the receiver. The ever-increasing share of high-volume media streams traversing the Internet due to the popularity and availability of video-streaming services can put a strain on network resources and lead to congestion. Since most congestion control techniques proposed for NDN are receiver-based and rely on the users to adjust their interest rates, a fairness scheme needs to be implemented at the intermediate network nodes to ensure that “rogue” users do not monopolize the available network resources. This paper proposes a fairness-based active queue management at network routers which performs per-flow interest rate shaping in order to ensure fair allocation of resources. Different congestion scenarios for both single path and multipath network topologies have been simulated to test the effectiveness of the proposed fairness scheme. Performance of the scheme is evaluated using Jain’s fairness index as a fairness metric.


2012 ◽  
Vol 31 (4) ◽  
pp. 265-270 ◽  
Author(s):  
Mario Plebani

Summary Laboratory medicine, as a specialty that had prioritised quality control, has always been at the forefront of error reduction. In the last decades, a dramatic decrease of analytical errors has been experienced, while a relatively high frequency of errors has been documented in the pre-analytical phase. Most pre-analytical errors, which account for up to 70% of all mistakes made in laboratory diagnostics, arise during patient preparation, and sample collection, transportation, preparation for analysis and storage. However, while it has been reported that the pre-analytical phase is error-prone, only recently has it been demonstrated that most of these errors occur in the »pre-pre-analytical phase«, which comprises the initial procedures of the testing process performed outside the laboratory walls by healthcare personnel outside the direct control of the clinical laboratory. Developments in automation and information technologies have played a major role in decreasing some pre-analytical errors and, in particular, the automation of repetitive, errorprone and bio-hazardous pre-analytical processes performed within the laboratory walls has effectively decreased errors in specimen preparation, centrifugation, aliquot preparation, pipetting and sorting. However, more efforts should be made to improve the appropriateness of test request, patient and sample identification procedures and other pre-analytical steps performed outside the laboratory walls.


2018 ◽  
Vol 44 ◽  
pp. 00020 ◽  
Author(s):  
Alexey Busygin ◽  
Maxim Kalinin ◽  
Artem Konoplev

This paper considers the tasks of supporting the connectivity of nodes in communication networks of unmanned transport (VANET/MANET-networks). High dynamics, decentralization and absence of hierarchy in the networks of this type actualize the task of supporting the connectivity of nodes with software-configurable security services, providing the network protection. It is offered to use a Blockchain technology based system for VANET/MANET network topologyand authentication data distribution and storage. The issue of unlimited blockchain growth preventing this method from being implemented in VANET/MANET networks is considered. The existing solutions of this issueare analyzed and drawbacks are identified. A notion of blockchain with floating genesis block is introduced and its advantages over similar ideas are demonstrated thus allowing it to be used to resolve the issue of continuously growing blockchain within the systems with stalingtransactions as a whole and in VANET/MANET networks in particular.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Qianqiao Chen ◽  
Vaibhawa Mishra ◽  
Jose Nunez-Yanez ◽  
Georgios Zervas

The software defined network and network function virtualization are proposed to address the network ossification issue in current Internet infrastructure. Network functions and services are implemented as software applications to increase the programmability of network. However, involving general purpose processors in data plane restricts the bandwidth of network services. Therefore, to keep both the bandwidth and flexibility, a FPGA platform is suggested as a reconfigurable platform to deliver high bandwidth virtual network functions on data plane. In this paper, the FPGA resource has been virtualized by interconnecting partial reconfigurable regions to deliver high bandwidth reconfigurable processing on network streams. With the help of partial reconfiguration technology, network functions on our platform can be configured without affecting other functions on the same FPGA device. The on-chip interconnect system is further evaluated by comparing with existing network-on-chip system. A reconfiguration process is also proposed and demonstrated that it can be performed on our platform. The process can happen in the real time of network services and it is able to keep the original function working during the download of partial bitstream.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Roberto Bruschi ◽  
Alessandro Carrega ◽  
Franco Davoli

Network Functions Virtualization (NFV) is a network architecture concept where network functionality is virtualized and separated into multiple building blocks that may connect or be chained together to implement the required services. The main advantages consist of an increase in network flexibility and scalability. Indeed, each part of the service chain can be allocated and reallocated at runtime depending on demand. In this paper, we present and evaluate an energy-aware Game-Theory-based solution for resource allocation of Virtualized Network Functions (VNFs) within NFV environments. We consider each VNF as a player of the problem that competes for the physical network node capacity pool, seeking the minimization of individual cost functions. The physical network nodes dynamically adjust their processing capacity according to the incoming workload, by means of an Adaptive Rate (AR) strategy that aims at minimizing the product of energy consumption and processing delay. On the basis of the result of the nodes’ AR strategy, the VNFs’ resource sharing costs assume a polynomial form in the workflows, which admits a unique Nash Equilibrium (NE). We examine the effect of different (unconstrained and constrained) forms of the nodes’ optimization problem on the equilibrium and compare the power consumption and delay achieved with energy-aware and non-energy-aware strategy profiles.


Sign in / Sign up

Export Citation Format

Share Document