scholarly journals Young-Adult Male Rats’ Vulnerability to Chronic Mild Stress Is Reflected by Anxious-Like instead of Depressive-Like Behaviors

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Herrera-Pérez José Jaime ◽  
Benítez-Coronel Venus ◽  
Jiménez-Rubio Graciela ◽  
Hernández-Hernández Olivia Tania ◽  
Martínez-Mota Lucía

In a previous study, we found that chronic mild stress (CMS) paradigm did not induce anhedonia in young-adult male rats but it reduced their body weight gain. These contrasting results encouraged us to explore other indicators of animal’s vulnerability to stress such as anxious-like behaviors, since stress is an etiologic factor also for anxiety. Thus, in this study, we evaluated the vulnerability of these animals to CMS using behavioral tests of depression or anxiety and measuring serum corticosterone. Male Wistar rats were exposed to four weeks of CMS; the animals’ body weight and sucrose preference (indicator of anhedonia) were assessed after three weeks, and, after the fourth week, some animals were evaluated in a behavioral battery (elevated plus maze, defensive burying behavior, and forced swimming tests); meanwhile, others were used to measure serum corticosterone. We found that CMS (1) did not affect sucrose preference, immobility behavior in the forced swimming test, or serum corticosterone; (2) decreased body weight gain; and (3) increased the rat’s entries into closed arms of the plus maze and the cumulative burying behavior. These data indicate that young male rats’ vulnerability to CMS is reflected as poor body weight gain and anxious-like instead of depressive-like behaviors.

2014 ◽  
Vol 11 (1) ◽  
pp. 36 ◽  
Author(s):  
Clare L Adam ◽  
Patricia A Williams ◽  
Matthew J Dalby ◽  
Karen Garden ◽  
Lynn M Thomson ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-1 ◽  
Author(s):  
José Jaime Herrera-Pérez ◽  
Venus Benítez-Coronel ◽  
Graciela Jiménez-Rubio ◽  
Olivia Tania Hernández-Hernández ◽  
Lucía Martínez-Mota

2018 ◽  
Vol 315 (1) ◽  
pp. E29-E37 ◽  
Author(s):  
Mariana Peduti Halah ◽  
Paula Beatriz Marangon ◽  
Jose Antunes-Rodrigues ◽  
Lucila L. K. Elias

Neonatal nutritional changes induce long-lasting effects on energy homeostasis. Adiponectin influences food intake and body weight. The aim of this study was to investigate the effects of neonatal nutritional programming on the central stimulation of adiponectin. Male Wistar rats were divided on postnatal (PN) day 3 in litters of 3 (small litter, SL), 10 (normal litter, NL), or 16 pups/dam (large litter, LL). We assessed body weight gain for 60 days, adiponectin concentration, and white adipose tissue weight. We examined the response of SL, NL, and LL rats on body weight gain, food intake, oxygen consumption (V̇o2), respiratory exchange ratio (RER), calorimetry, locomotor activity, phosphorylated-AMP-activated protein kinase (AMPK) expression in the hypothalamus, and uncoupling protein (UCP)-1 in the brown adipose tissue after central stimulus with adiponectin. After weaning, SL rats maintained higher body weight gain despite similar food intake compared with NL rats. LL rats showed lower body weight at weaning, with a catch up afterward and higher food intake. Both LL and SL groups had decreased plasma concentrations of adiponectin at PN60. SL rats had increased white adipose tissue. Central injection of adiponectin decreased body weight and food intake and increased V̇o2, RER, calorimetry, p-AMPK and UCP- 1 expression in NL rats, but it had no effect on SL and LL rats, compared with the respective vehicle groups. In conclusion, neonatal under- and overfeeding induced an increase in body weight gain in juvenile and early adult life. Unresponsiveness to central effects of adiponectin contributes to the imbalance of the energy homeostasis in adult life induced by neonatal nutritional programming.


2013 ◽  
Vol 32 (2) ◽  
pp. 113-122 ◽  
Author(s):  
John T. Houpt ◽  
Glenn J. Leach ◽  
Larry R. Williams ◽  
Mark S. Johnson ◽  
Gunda Reddy

4-Amino-2-nitrotoluene (4A2NT; CAS 119-32-4) is a degradation product of 2,4-dinitrotoluene. The toxicity data on 4A2NT are limited. Therefore, we collected toxicity data from rats to assess environmental and human health effects from exposures. The approximate lethal dose for both sexes was 5000 mg/kg. A 14-day toxicity study in rats was conducted with 4A2NT in the feed at concentrations of 0, 125, 250, 500, 1000, and 2000 ppm. Based on a 14-day oral dose range toxicity study with 4A2NT in the feed, 2000 ppm was selected as highest concentration for a subsequent 90-day study. An oral 90-day subchronic toxicity study in rats was conducted with concentrations of 0, 500, 1000, or 2000 ppm of 4A2NT in the feed. The calculated consumed doses of 4A2NT in the feed were 0, 27, 52, or 115 mg/kg/d for males and 0, 32, 65, or 138 mg/kg/d for females. A no-observed adverse effect level could not be determined. The lowest observed adverse effect level was 27 mg/kg/d for males and 32 mg/kg/d for female rats based upon decreased body weight gain. The decreased body weight gain in male rats was the most sensitive adverse event observed in this study and was used to derive a benchmark dose (BMD). A BMD of 23.1 mg/kg/d and BMD with 10% effect level of 15.5 mg/kg/d were calculated for male rats, which were used to derive an oral reference dose (RfD). The human RfD of 1.26 μg/kg/d was derived using current United States Environmental Protection Agency guidelines.


2000 ◽  
pp. 406-410 ◽  
Author(s):  
M Tena-Sempere ◽  
L Pinilla ◽  
LC Gonzalez ◽  
J Navarro ◽  
C Dieguez ◽  
...  

The obese gene (ob) product, leptin, has recently emerged as a key element in body weight homeostasis, neuroendocrine function and fertility. Identification of biologically active, readily synthesized fragments of the leptin molecule has drawn considerable attention, as they may provide a powerful tool for detailed characterization of the biological actions of leptin in different experimental settings. Recently, a fragment of mouse leptin protein comprising amino acids 116-130, termed leptin(116-130) amide, was shown to mimic the effects of the native molecule in terms of body weight gain and food intake, and to elicit LH and prolactin (PRL) secretion in vivo. As a continuation of our previous experimental work, the present study reports on the effects of leptin(116-130) amide on basal and stimulated testosterone secretion by adult rat testis in vitro. In addition, a comparison of the effects of human recombinant leptin and leptin(116-130) amide at the pituitary level on the patterns of LH, FSH, PRL and GH secretion is presented. As reported previously by our group, human recombinant leptin(10(-9)-10(-7)M) significantly inhibited both basal and human chorionic gonadotrophin (hCG)-stimulated testosterone secretion in vitro. Similarly, incubation of testicular tissue in the presence of increasing concentrations of leptin(116-130) amide (10(-9)-10(-5)M) resulted in a dose-dependent inhibition of basal and hCG-stimulated testosterone secretion; a reduction that was significant from a dose of 10(-7)M upwards. In addition, leptin(116-130) amide, at all doses tested (10(-9)-10(-5)M), significantly decreased LH and FSH secretion by incubated hemi-pituitaries from adult male rats. In contrast, in the same experimental protocol, recombinant leptin(10(-9)-10(-7)M) was ineffective in modulating LH and FSH release. Finally, neither recombinant leptin nor leptin(116-130) amide were able to change basal PRL and GH secretion in vitro. Our results confirm the ability of leptin, acting at the testicular level, to inhibit testosterone secretion, and map the effect to a domain of the leptin molecule that lies between amino acid residues 116 and 130. In addition, we provide evidence for a direct inhibitory action of leptin(116-130) amide on pituitary LH and FSH secretion, a phenomenon not observed for the native leptin molecule, in the adult male rat.


Author(s):  
N Ahmad ◽  
S Majumder ◽  
MA Miah ◽  
MJ Uddin

An investigation on Long Evans male rats fed with different edible fats and oils was conducted in the Department of Physiology, Bangladesh Agricultural University, Mymensingh during a period of 7 weeks (1st April to 19th May, 2005) to determine and to compare the effect of feeds on body weight gain and on weights of some selected organs (heart, liver and kidney) removing the impact of unequal feed intake. A total of 20, six-week old male rats were randomly divided into A, B, C and D groups. Each group consisted of 5 rats. Rats were fed rat pellets purchased from ICDDR,B, Dhaka supplemented with beef fat in group A, fish fat in group B and soybean oil in group C while group D was considered as control and fed only with rat pellets. The concentration of fats and oils were 7% of normal diet and fed for 7 weeks. The highest weekly mean body weight gain (19.90g) adjusted for unequal feed intake was achieved by the rats of beef fat supplemented group A, followed by the rats of soybean oil supplemented group C (19.76g) and fish fat supplemented group B (15.67g). But none of the adjusted means of weekly body weight gain differed significantly (p > 0.05) from the control. Insignificant increases in heart weight were recorded in all treated rats and the maximum weight was in fish oil treated ones. Not much differences were recorded in the kidney weights rather beef oil treated rats' kidney had the lowest mean weight. A significantly (p < 0.01) higher liver weight was recorded in group B & C compared to control (group D), though the differences between A & D were insignificant. It could be concluded that fats and oils are harmful for the rat's body especially on liver and heart. Key words: Edible fats and oils, rat, body weight, organ weight, analysis of variance, covariance DOI = 10.3329/bjvm.v5i1.1326 Bangl. J. Vet. Med. (2007). 5 (1 & 2): 107-110


Author(s):  
Aleksandra Kołota ◽  
Dominika Głąbska ◽  
Michał Oczkowski ◽  
Joanna Gromadzka-Ostrowska

The World Health Organization (WHO) reported that alcohol consumption is a serious problem in adolescents. The aim of the study was to assess the influence of the time of exposure of various alcoholic beverages on body mass as well as on select parameters of liver antioxidant defense in adolescent Wistar rats. Thirty-day-old animals were divided into 12 groups (six animals in each): control and groups receiving various beverages containing 10% of alcohol (ethanol, red wine, beer), observed for two, four, and six weeks. The body weight gain and energy supply were analyzed for body mass assessment. The catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase, transferase (GST), reductase activities, total antioxidant status, and glutathione level (GSH) were analyzed, for a liver antioxidant defense assessment. Group receiving red wine was characterized by the highest alcohol intake, lowest dietary intake, and highest total energy supply (p < 0.05). However, this did not influence body weight gain (p > 0.05). Reduced diet intake in groups receiving alcohol was counterbalanced by its energy value. Therefore, the energy supply was not lower than for the control (p > 0.05). Alcohol consumption and the experiment duration influenced CAT, SOD, and GST activities and GSH level. Alcohol consumption may influence hepatic antioxidant defense in adolescent male rats, but without influence on body weight gain.


1995 ◽  
Vol 73 (6) ◽  
pp. 863-869 ◽  
Author(s):  
Shiguang Yu ◽  
Anton C. Beynen

The mechanism underlying the reduced Cu status in rats fed on a high-Sn diet was investigated. Male rats aged 4 weeks were fed ad lib. on purified diets containing either 1 or 100 mg Sn/kg and demineralized water for a period of 4 weeks. The high-Sn diet had no effect on feed intake, body-weight gain or weight of liver and kidney but significantly reduced Cu concentrations in plasma, liver and kidney. Biliary Cu excretion was decreased significantly in rats fed on the high-Sn diet. Apparent Cu absorption (Cu intake−faecal Cu) was not affected by the high-Sn diet, but the estimate of true Cu absorption (Cu intake−(faecal Cu−biliary Cu)) was significantly reduced. We conclude that high Sn intake reduces Cu status in rats through inhibition of Cu absorption. The decreased biliary Cu excretion observed on the high-Sn diet is a result of the reduced Cu absorption.


Sign in / Sign up

Export Citation Format

Share Document