scholarly journals Protective Effect of Decursin Extracted fromAngelica gigasin Male Infertility via Nrf2/HO-1 Signaling Pathway

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Woong Jin Bae ◽  
U. Syn Ha ◽  
Jin Bong Choi ◽  
Kang Sup Kim ◽  
Su Jin Kim ◽  
...  

Higher testicular temperature results in altered spermatogenesis due to heat-related oxidative stress. We examined the effects of decursin extracted fromAngelica gigasNakai on antioxidant activityin vitroand in a cryptorchidism-induced infertility rat model. TM3 Leydig cell viability was measured based on oxidative stress according to treatment. Either distilled water or AG 400 mg/kg ofA. gigasextract was administered orally for 4 weeks after unilateral cryptorchidism was induced. After 1, 2, and 4 weeks, six rats from the control group and six rats from treatment group were sacrificed. Testicular weight, semen quality, antioxidant activities, nuclear factor erythroid 2-related factor 2 (Nrf2) protein, and mRNA expression of Nrf2-regulated genes were analyzed. Treatment withA. gigasextract (1) protected TM3 cells against oxidative stress in a dose-dependent manner, (2) improved the mean weight of the cryptorchid testis, (3) maintained sperm counts, motility, and spermatogenic cell density, (4) decreased levels of 8-hydroxy-2-deoxyguanosine (8-OHdG) and increased levels of superoxide dismutase (SOD), (5) significantly increased Nrf2 and heme oxygenase-1 (HO-1), and (6) significantly decreased apoptosis. This study suggests that decursin extracted fromA. gigasis a supplemental agent that can reduce oxidative stress by Nrf2-mediated upregulation of HO-1 in rat experimentally induced unilateral cryptorchidism and may improve cryptorchidism-induced infertility.

2016 ◽  
Vol 32 (12) ◽  
pp. 1952-1960
Author(s):  
Ming Zhang ◽  
Yanrang Wang ◽  
Xiaojun Wang ◽  
Jing Liu ◽  
Jingshu Zhang ◽  
...  

Ethylbenzene is an important industrial chemical, but its potential toxicity is a recent concern. Our previous study investigated the renal toxicity of ethylbenzene in vivo. Rat renal epithelial cells (NRK-52E cells) were incubated with 0, 30, 60, and 90 µmol/L of ethylbenzene for 24 h in vitro to investigate ethylbenzene-induced oxidative stress, apoptosis, and the expression of heme oxygenase 1 (HO-1) and nuclear factor (erythroid 2)-related factor 2 (Nrf2). The cell survival rate in the ethylbenzene-treated groups was significantly lower than the control group. Ethylbenzene significantly increased intracellular reactive oxygen species and apoptosis. Malondialdehyde levels were significantly elevated compared with the control group, while glutathione levels and glutathione peroxidase activities were decreased in ethylbenzene-treated groups. The activities of catalase and superoxide dismutase were also markedly reduced. A significant dose-dependent increase in HO-1 and Nrf2 messenger RNA expression levels was observed in ethylbenzene-treated groups compared with the control group. Similarly, ethylbenzene treatment enhanced protein expression of HO-1 and Nrf2 in a dose-dependent manner. Our results indicated that ethylbenzene induced oxidative stress, apoptosis, and upregulation of HO-1 and Nrf2 in NRK-52E cells, which contributes to ethylbenzene-induced renal toxicity.


2021 ◽  
Author(s):  
Xiuhuan Chen ◽  
Weiguo Wan ◽  
Yan Guo ◽  
Tianxin Ye ◽  
Yuhong Fo ◽  
...  

Abstract Background Oxidative stress is an important factor involved in the progress of heart failure. The current study was performed to investigate whether pinocembrin was able to ameliorate post-infarct heart failure (PIHF) and the underlying mechanisms. Methods Rats were carried out left anterior descending artery ligation to induce myocardial infarction and subsequently raised for 6 weeks to produce chronic heart failure. Then pinocembrin was administrated every other day for 2 weeks. The effects were evaluated by echocardiography, western blot, Masson’s staining, biochemical examinations, immunohistochemistry, and fluorescence. In vitro we also cultured H9c2 myocytes to further testify the mechanisms. Results We found that PIHF-induced deteriorations of cardiac functions were significantly ameliorated by administrating pinocembrin. In addition, the pinocembrin treatment also attenuated collagen deposition and augmented vascular endothelial growth factor receptor 2 in infarct border zone along with an attenuated apoptosis, which were related to an amelioration of oxidative stress evidenced by reduction of reactive oxygen species (ROS) in heart tissue and malondialdehyde (MDA) in serum, and increase of superoxide dismutase (SOD). This were accompanied by upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2)/ heme oxygenase-1 (HO-1) pathway. In vitro experiments we found that non-specific Nrf2 inhibitor significantly reversed the effects resulted from pinocembrin including antioxidant, anti-apoptosis, anti-fibrosis and neovascularization, which further indicated the amelioration of PIHF by pinocembrin was in a Nrf2/HO-1 pathway-dependent manner. Conclusion Pinocembrin ameliorated cardiac functions and remodeling resulted from PIHF by ROS scavenging and Nrf2/HO-1 pathway activation which further attenuated collagen fibers deposition and apoptosis, and facilitated angiogenesis.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Xiuhuan Chen ◽  
Weiguo Wan ◽  
Yan Guo ◽  
Tianxin Ye ◽  
Yuhong Fo ◽  
...  

Abstract Background Oxidative stress is an important factor involved in the progress of heart failure. The current study was performed to investigate whether pinocembrin was able to ameliorate post-infarct heart failure (PIHF) and the underlying mechanisms. Methods Rats were carried out left anterior descending artery ligation to induce myocardial infarction and subsequently raised for 6 weeks to produce chronic heart failure. Then pinocembrin was administrated every other day for 2 weeks. The effects were evaluated by echocardiography, western blot, Masson’s staining, biochemical examinations, immunohistochemistry, and fluorescence. In vitro we also cultured H9c2 cardiomyocytes and cardiac myofibroblasts to further testify the mechanisms. Results We found that PIHF-induced deteriorations of cardiac functions were significantly ameliorated by administrating pinocembrin. In addition, the pinocembrin treatment also attenuated collagen deposition and augmented vascular endothelial growth factor receptor 2 in infarct border zone along with an attenuated apoptosis, which were related to an amelioration of oxidative stress evidenced by reduction of reactive oxygen species (ROS) in heart tissue and malondialdehyde (MDA) in serum, and increase of superoxide dismutase (SOD). This were accompanied by upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2)/ heme oxygenase-1 (HO-1) pathway. In vitro experiments we found that specific Nrf2 inhibitor significantly reversed the effects resulted from pinocembrin including antioxidant, anti-apoptosis, anti-fibrosis and neovascularization, which further indicated the amelioration of PIHF by pinocembrin was in a Nrf2/HO-1 pathway-dependent manner. Conclusion Pinocembrin ameliorated cardiac functions and remodeling resulted from PIHF by ROS scavenging and Nrf2/HO-1 pathway activation which further attenuated collagen fibers deposition and apoptosis, and facilitated angiogenesis.


2018 ◽  
Vol 38 (2) ◽  
pp. 247-254 ◽  
Author(s):  
WX Zhang ◽  
XY Xiao ◽  
CG Peng ◽  
WL Chen ◽  
S Xie ◽  
...  

Objective: To investigate the therapeutic effect and mechanism of sodium tanshinone IIA sulfate (STS) on paraquat (PQ)-induced myocardial injuries in a rat model. Methods: Healthy adult Sprague Dawley rats were randomly divided into normal control, PQ, and PQ + STS groups. PQ group was given a single intragastric administration of PQ (80 mg/kg). PQ + STS group was intraperitoneally injected with STS (1 ml/kg) at 30 min following PQ exposure. Rats in control and PQ groups were injected with equal amount of saline. After 12, 24, 48, and 72 h, rats were killed, and the apoptosis of myocardial cells was detected. Myocardial expression of Bax and Bcl-2 was measured. The activity of the nuclear erythroid 2-related factor 2 (Nrf2) pathway was assessed by Western blot. Results: The apoptotic cells in PQ group were significantly increased in a time-dependent manner compared with the control group ( p < 0.01). The rats in PQ group exhibited significantly lower Bcl-2 expression, but notably higher Bax expression at 12, 24, 48, and 72 h after PQ exposure ( p < 0.05 or 0.01). STS intervention markedly reduced the proportion of apoptotic myocardial cells, increased Bcl-2 expression, and decreased Bax expression at 24, 48, and 72 h after treatment ( p < 0.05 or 0.01). The expression of phosphorylated Nrf2 and heme oxygenase 1 in PQ + STS group was significantly increased compared with PQ and control groups ( p < 0.05 or 0.01). Conclusion: STS effectively inhibits PQ-induced myocardial cell apoptosis in rats via modulating the Nrf2 pathway, suggesting its potential as a promising therapeutic agent for PQ-induced myocardium damage.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Yan Xu ◽  
Huan Yuan ◽  
Yi Luo ◽  
Yu-Jie Zhao ◽  
Jian-Hui Xiao

Aging is an important risk factor in the occurrence of many chronic diseases. Senescence and exhaustion of adult stem cells are considered as a hallmark of aging in organisms. In this study, a senescent human amniotic mesenchymal stem cell (hAMSC) model subjected to oxidative stress was established in vitro using hydrogen peroxide. We investigated the effects of ganoderic acid D (GA-D), a natural triterpenoid compound produced from Ganoderma lucidum, on hAMSC senescence. GA-D significantly inhibited β-galactosidase (a senescence-associated marker) formation, in a dose-dependent manner, with doses ranging from 0.1 μM to 10 μM, without inducing cytotoxic side-effects. Furthermore, GA-D markedly inhibited the generation of reactive oxygen species (ROS) and the expression of p21 and p16 proteins, relieved the cell cycle arrest, and enhanced telomerase activity in senescent hAMSCs. Furthermore, GA-D upregulated the expression of phosphorylated protein kinase R- (PKR-) like endoplasmic reticulum kinase (PERK), peroxidase III (PRDX3), and nuclear factor-erythroid 2-related factor (NRF2) and promoted intranuclear transfer of NRF2 in senescent cells. The PERK inhibitor GSK2656157 and/or the NRF2 inhibitor ML385 suppressed the PERK/NRF2 signaling, which was activated by GA-D. They induced a rebound for the generation of ROS and β-galactosidase-positive cells and attenuated the differentiation capacity. These findings suggest that GA-D retards hAMSC senescence through activation of the PERK/NRF2 signaling pathway and may be a promising candidate for the discovery of antiaging agents.


Author(s):  
Xigang Luo ◽  
Dapeng Sun ◽  
Yinxiang Wang ◽  
Fengxiang Zhang ◽  
Yi Wang

Various liver diseases caused by liver damage seriously affect people’s health. The purpose of this study was to clarify that the effects and mechanism of Carnitine palmitoyltransferase 1 (Cpt1a) on oxidative stress and inflammation in liver injury. It was found that the expression of Cpt1a mRNA was up-regulated in model mice of liver injury. So, over-expression of Cpt1a increased reactive oxygen species (ROS) production and malondialdehyde (MDA) levels, and reduced superoxide dismutase (SOD), glutathione (GSH) and glutathione peroxidase (GSH-px) levels in vitro model of liver injury. It was also shown that over-expression of Cpt1a suppressed the Nuclear factor-erythroid-2-related factor 2 (Nrf2)/ heme oxygenase-1 (HO-1) signaling pathway. In summary, these data indicate that Cpt1a promotes ROS-induced oxidative stress in liver injury via the Nrf2/HO-1 and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome signaling pathway.


2017 ◽  
Vol 44 (1) ◽  
pp. 21-37 ◽  
Author(s):  
Qianhui Li ◽  
Yin Xiang ◽  
Yu Chen ◽  
Yong Tang ◽  
Yachen Zhang

Background/Aims: Excessive reactive oxygen species (ROS) disturb the physiology of H9c2 cells, which is regarded as a major cause of H9c2 cardiomyocyte apoptosis. Ginsenoside Rg1 is the main active extract of ginseng, which has important antioxidant properties in various cell models. This project investigated the role of ginsenoside Rg1 in hypoxia/reoxygenation (H/R)-induced oxidative stress injury in cultured H9c2 cells to reveal the underlying signaling pathways. Methods: H9c2 cells were pretreated with ginsenoside Rg1 for 12 h before exposure to H/R. In the absence or presence of Nrf2siRNA, HO-1 inhibitor (ZnPP-IX), and inhibitors of the MAPK pathway (SB203580, PD98059, SP600125), H9c2 cells were subjected to H/R with Rg1 treatment. The effects and mechanisms of H/R-induced cardiomyocyte injury were measured. Results: Ginsenoside Rg1 treatment suppressed H/R-induced apoptosis and caspase-3 activation. Ginsenoside Rg1 treatment decreased ROS production and mitochondrial membrane depolarization by elevating the intracellular antioxidant capacity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and reduced glutathione (GSH). Furthermore, ginsenoside Rg1 stimulation appeared to result in nuclear translocation of NF-E2-related factor 2 (Nrf2), along with enhanced expression of the downstream target gene heme oxygenase-1 (HO-1) in a dose-dependent manner. However, ginsenoside Rg1-mediated cardioprotection was abolished by Nrf2-siRNA and HO-1 inhibitor. H/R treatment increased the levels of phosphorylated c-Jun N-terminal kinases (p-JNK), which was dramatically attenuated by ginsenoside Rg1 and SP600125 (a specific JNK inhibitor). Conclusion: These observations indicate that ginsenoside Rg1 activates the Nrf2/HO-1 axis and inhibits the JNK pathway in H9c2 cells to protect against oxidative stress.


Biomolecules ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 380 ◽  
Author(s):  
Huang ◽  
Chang ◽  
Chau ◽  
Chiu

Hispidin, a polyphenol compound isolated from Phellinus linteus, has been reported to possess antioxidant activities. In this study, we aimed to investigate the mechanisms underlying the protective effect of hispidin against hydrogen peroxide (H2O2)-induced oxidative stress on Adult Retinal Pigment Epithelial cell line-19 (ARPE-19) cells. Hispidin was not cytotoxic to ARPE-19 cells at concentrations of less than 50 μM. The levels of intracellular reactive oxygen species (ROS) were analyzed by dichlorofluorescin diacetate (DCFDA) staining. Hispidin significantly restored H2O2-induced cell death and reduced the levels of intracellular ROS. The expression levels of antioxidant enzymes, such as NAD(P)H:Quinine oxidoreductase-1 (NQO-1), heme oxygenase-1 (HO-1), glutamate-cysteine ligase catalytic subunit (GCLC), and glutamate-cysteine ligase modifier subunit (GCLM) were examined using real-time PCR and Western blotting. Our results showed that hispidin markedly enhanced the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), HO-1, NQO-1, GCLM, and GCLC in a dose-dependent manner. Furthermore, knockdown experiments revealed that transfection with Nrf2 siRNA successfully suppresses the hispidin activated Nrf2 signaling in ARPE-19 cells. Moreover, activation of the c-Jun N-terminal kinase (JNK) pathway is involved in mediating the protective effects of hispidin on the ARPE-19 cells. Thus, the present study demonstrated that hispidin provides protection against H2O2-induced damage in ARPE-19 cells via activation of Nrf2 signaling and up-regulation of its downstream targets, including Phase II enzymes, which might be associated with the activation of the JNK pathway.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Chitra Basu ◽  
Runa Sur

Hydrogen peroxide (H2O2) mediated oxidative stress leading to hepatocyte apoptosis plays a pivotal role in the pathophysiology of several chronic liver diseases. This study demonstrates that S-allyl cysteine (SAC) renders cytoprotective effects on H2O2 induced oxidative damage and apoptosis in HepG2 cells. Cell viability assay showed that SAC protected HepG2 cells from H2O2 induced cytotoxicity. Further, SAC treatment dose dependently inhibited H2O2 induced apoptosis via decreasing the Bax/Bcl-2 ratio, restoring mitochondrial membrane potential (∆Ψm), inhibiting mitochondrial cytochrome c release, and inhibiting proteolytic cleavage of caspase-3. SAC protected cells from H2O2 induced oxidative damage by inhibiting reactive oxygen species accumulation and lipid peroxidation. The mechanism underlying the antiapoptotic and antioxidative role of SAC is the induction of the heme oxygenase-1 (HO-1) gene in an NF-E2-related factor-2 (Nrf-2) and Akt dependent manner. Specifically SAC was found to induce the phosphorylation of Akt and enhance the nuclear localization of Nrf-2 in cells. Our results were further confirmed by specific HO-1 gene knockdown studies which clearly demonstrated that HO-1 induction indeed played a key role in SAC mediated inhibition of apoptosis and ROS production in HepG2 cells, thus suggesting a hepatoprotective role of SAC in combating oxidative stress mediated liver diseases.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Si Huang ◽  
Haiyan Yuan ◽  
Wenqun Li ◽  
Xinyi Liu ◽  
Xiaojie Zhang ◽  
...  

Polygonatum sibiricum, a well-known life-prolonging tonic in Chinese medicine, has been widely used for nourishing nerves in the orient, but the underlying molecular mechanisms remain unclear. In this study, we found that P. sibiricum polysaccharides (PSP) ameliorated 1-methyl-4-phenyl-1,2.3,6-tetrahydropyridine- (MPTP-) induced locomotor activity deficiency and dopaminergic neuronal loss in an in vivo Parkinson’s disease (PD) mouse model. Additionally, PSP pretreatment inhibited N-methyl-4-phenylpyridine (MPP+) induced the production of reactive oxygen species, increasing the ratio of reduced glutathione/oxidized glutathione. In vitro experiments showed that PSP promoted the proliferation of N2a cells in a dose-dependent manner, while exhibiting effects against oxidative stress and neuronal apoptosis elicited by MPP+. These effects were found to be associated with the activation of Akt/mTOR-mediated p70S6K and 4E-BP1 signaling pathways, as well as nuclear factor erythroid 2-related factor 2- (Nrf2-) mediated NAD(P)H quinone oxidoreductase 1 (NQO1), heme oxygenase-1 (HO-1), glutamate-cysteine ligase catalytic subunit (Gclc), and glutamate-cysteine ligase modulatory subunit (Gclm), resulting in antiapoptotic and antioxidative effects. Meanwhile, PSP exhibited no chronic toxicity in C57BJ/6 mice. Together, our results suggest that PSP can serve as a promising therapeutic candidate with neuroprotective properties in preventing PD.


Sign in / Sign up

Export Citation Format

Share Document