scholarly journals Suppressing Syndecan-1 Shedding Ameliorates Intestinal Epithelial Inflammation through Inhibiting NF-κB Pathway and TNF-α

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Yan Zhang ◽  
Zhongqiu Wang ◽  
Jun Liu ◽  
Zhenyu Zhang ◽  
Ye Chen

Syndecan-1 (SDC1), with a long variable ectodomain carrying heparan sulfate chains, participates in many steps of inflammatory responses. But reports about the efforts of SDC1’s unshedding ectodomain on intestinal epithelial inflammation and the precise underlying mechanism are limited. In our study, unshedding SDC1 from intestinal epithelial cell models was established by transfecting with unshedding SDC1 plasmid into the cell, respectively. And the role of unshedding SDC1 in intestinal inflammation was further investigated. We found that components of NF-κB pathway, including P65 and IκBα, and secretion of TNF-αwere upregulated upon LPS stimulation in intestinal epithelial cells. SDC1, especially through its unshed ectodomain, significantly lessened the upregulation extent. It also functioned in inhibiting migration of neutrophils by downregulating secretion of CXCL-1. Taken together, we conclude that suppressing SDC1 shedding from intestinal epithelial cells relieves severity of intestinal inflammation by inactivating NF-κB pathway and downregulating TNF-αexpression. These results indicate that the ectodomain of SDC1 might be the optional therapy for intestinal inflammation.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ti-Dong Shan ◽  
Han Yue ◽  
Xue-Guo Sun ◽  
Yue-Ping Jiang ◽  
Li Chen

Abstract Background The complications caused by diabetes mellitus (DM) are the focus of clinical treatment. However, little is known about diabetic enteropathy (DE) and its potential underlying mechanism. Methods Intestinal epithelial cells (IECs) and intestinal epithelial stem cells (IESCs) were harvested from BKS.Cg-Dock7m+/+Leprdb/JNju (DM) mice, and the expression of R-Spondin 3 (Rspo3) was detected by RT-qPCR, Western blotting, immunohistochemistry, and immunofluorescence. The role of Rspo3 in the abnormal differentiation of IECs during DM was confirmed by knockdown experiments. Through miRNA expression profiling, bioinformatics analysis, and RT-qPCR, we further analyzed the differentiation-related miRNAs in the IECs from mice with DM. Results Abnormal differentiation of IECs was observed in the mice with DM. The expression of Rspo3 was upregulated in the IECs from the mice with DM. This phenomenon was associated with Rspo3 overexpression. Additionally, Rspo3 is a major determinant of Lgr5+ stem cell identity in the diabetic state. Microarray analysis, bioinformatics analysis, and luciferase reporter assays revealed that microRNA (miR)-380-5p directly targeted Rspo3. Moreover, miR-380-5p upregulation was observed to attenuate the abnormal differentiation of IECs by regulating Rspo3 expression. Conclusions Together, our results provide definitive evidence of the essential role of Rspo3 in the differentiation of IECs in DM.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuheng Luo ◽  
Cong Lan ◽  
Kunhong Xie ◽  
Hua Li ◽  
Estelle Devillard ◽  
...  

Intestinal inflammation is a major threat to the health and growth of young animals such as piglets. As a next-generation probiotics, limited studies have shown that Akkermansia muciniphila could alleviate inflammation of intestinal epithelial cells (IECs). In this study, a TNF-α-induced inflammatory model of IPEC-J2 cells, the intestinal porcine enterocytes, was built to evaluate the effects of active or inactive A. muciniphila on the inflammation of IECs. The viability of IPEC-J2 cells was the highest when treated with active (108 copies/mL) or inactive (109 copies/mL) A. muciniphila for 7.5 h (P < 0.01). Treated with 20 ng/mL of TNF-α and followed by a treatment of A. muciniphila, the mRNA level of proinflammatory cytokines (IL-8, IL-1β, IL-6 and TNF-α) was remarkably reduced (P < 0.05) along with the increased mRNA level of tight junction proteins (ZO-1 and Occludin, P < 0.05). Flow cytometry analysis showed that active or inactive A. muciniphila significantly suppressed the rate of the early and total apoptotic of the inflammatory IPEC-J2 cells (P < 0.05). According to results of transcriptome sequencing, active and inactive A. muciniphila may decline cell apoptosis by down-regulating the expression of key genes in calcium signaling pathway, or up-regulating the expression of key genes in cell cycle signaling pathway. And the bacterium may alleviate the inflammation of IECs by down-regulating the expression of PI3K upstream receptor genes. Our results indicate that A. muciniphila may be a promising NGP targeting intestinal inflammation.


2017 ◽  
Vol 312 (2) ◽  
pp. G123-G132 ◽  
Author(s):  
Yujie Shen ◽  
Min Zhou ◽  
Junkai Yan ◽  
Zizhen Gong ◽  
Yongtao Xiao ◽  
...  

Inflammatory bowel diseases (IBDs) are chronic, inflammatory disorders of the gastrointestinal tract with unclear etiologies. Intestinal epithelial cells (IECs), containing crypt and villus enterocytes, occupy a critical position in the pathogenesis of IBDs and are a major producer of immunoregulatory cytokines and a key component of the intact epithelial barrier. Previously, we have reported that miR-200b is involved in the progression of IBDs and might maintain the integrity of the intestinal epithelial barrier via reducing the loss of enterocytes. In this study, we further investigated the impact of miR-200b on intestinal epithelial inflammation and tight junctions in two distinct differentiated states of Caco-2 cells after TNF-α treatment. We demonstrated that TNF-α-enhanced IL-8 expression was decreased by microRNA (miR)-200b in undifferentiated IECs. Simultaneously, miR-200b could alleviate TNF-α-induced tight junction (TJ) disruption in well-differentiated IECs by reducing the reduction in the transepithelial electrical resistance (TEER), inhibiting the increase in paracellular permeability, and preventing the morphological redistribution of the TJ proteins claudin 1 and ZO-1. The expression levels of the JNK/c-Jun/AP-1 and myosin light chain kinase (MLCK)/phosphorylated myosin light chain (p-MLC) pathways were attenuated in undifferentiated and differentiated enterocytes, respectively. Furthermore, a dual-luciferase reporter gene detection system provided direct evidence that c-Jun and MLCK were the specific targets of miR-200b. Collectively, our results highlighted that miR-200b played a positive role in IECs via suppressing intestinal epithelial IL-8 secretion and attenuating TJ damage in vitro, which suggested that miR-200b might be a promising strategy for IBD therapy. NEW & NOTEWORTHY This was the first time that the inhibitory role of miR-200b on intestinal epithelial inflammation and paracellular permeability has been reported. Moreover, we further divided the intestinal epithelial cells (IECs) into two differentiated conditions and investigated the distinct impacts of miR-200b. Finally, we put forward and proved that myosin light chain kinase (MLCK) was a novel target of miR-200b.


1998 ◽  
Vol 274 (3) ◽  
pp. G472-G479 ◽  
Author(s):  
Maarten A. C. Meijssen ◽  
Steven L. Brandwein ◽  
Hans-Christian Reinecker ◽  
Atul K. Bhan ◽  
Daniel K. Podolsky

Intestinal epithelial cells may be actively involved in the immunoregulatory pathways leading to intestinal inflammation. The aim of this study was to assess expression by intestinal epithelial cells of cytokines with potential involvement in the development of intestinal inflammation in interleukin (IL)-2-deficient [(−/−)] mice. Wild-type mice, mice heterozygous for the disrupted IL-2 gene, and IL-2(−/−) mice were studied at 6, 16, and 24 wk of age. The mRNA levels of transforming growth factor-β1 (TGF-β1), tumor necrosis factor-α (TNF-α), IL-1β, IL-6, IL-15, KC, JE, and CD14 in colonic and small intestinal epithelial cells were assessed by Northern blot analysis. CD14 was also measured by Western blotting and reverse transcriptase polymerase chain reaction (RT-PCR). TGF-β1 mRNA was constitutively expressed in both colonic and small intestinal epithelial cells with increased expression in the colonic epithelium of colitic mice. CD14 was detected only in colonic epithelial cells, and mRNA levels increased severalfold in IL-2(−/−) mice with colitis. Northern analysis demonstrated increased levels of TGF-β1 and CD14 mRNA in colonic epithelial cells of IL-2(−/−) mice before the development of signs of colitis. CD14 mRNA and protein expression in the epithelial cells of colitic mice were confirmed by RT-PCR and Western blot analysis of isolated cells. In addition, IL-2(−/−) mice also expressed increased levels of IL-15 mRNA in small intestinal and colonic epithelial cells compared with heterozygous control mice. TNF-α, IL-1β, IL-6, KC, and JE mRNAs were only detectable in colonic epithelial cells of mice after the onset of colitis. Enhanced expression of TGF-β1, IL-15, and CD14 by colonic epithelial cells may play a role in the subsequent development of colitis in IL-2(−/−) mice.


2008 ◽  
Vol 76 (4) ◽  
pp. 1410-1422 ◽  
Author(s):  
Mohammed A. Khan ◽  
Saeid Bouzari ◽  
Caixia Ma ◽  
Carrie M. Rosenberger ◽  
Kirk S. B. Bergstrom ◽  
...  

ABSTRACT Enteropathogenic Escherichia coli (EPEC) and the murine pathogen Citrobacter rodentium belong to the attaching and effacing (A/E) family of bacterial pathogens. These noninvasive bacteria infect intestinal enterocytes using a type 3 secretion system (T3SS), leading to diarrheal disease and intestinal inflammation. While flagellin, the secreted product of the EPEC fliC gene, causes the release of interleukin 8 (IL-8) from epithelial cells, it is unclear whether A/E bacteria also trigger epithelial inflammatory responses that are FliC independent. The aims of this study were to characterize the FliC dependence or independence of epithelial inflammatory responses to direct infection by EPEC or C. rodentium. Following infection of Caco-2 intestinal epithelial cells by wild-type and ΔfliC EPEC, a rapid activation of several proinflammatory genes, including those encoding IL-8, monocyte chemoattractant protein 1, macrophage inflammatory protein 3α (MIP3α), and β-defensin 2, occurred in a FliC-dependent manner. These responses were accompanied by mitogen-activated protein kinase activation, as well as the Toll-like receptor 5 (TLR5)-dependent activation of NF-κB. At later infection time points, a subset of these proinflammatory genes (IL-8 and MIP3α) was also induced in cells infected with ΔfliC EPEC. The nonmotile A/E pathogen C. rodentium also triggered similar innate responses through a TLR5-independent but partially NF-κB-dependent mechanism. Moreover, the EPEC FliC-independent responses were increased in the absence of the locus of enterocyte effacement-encoded T3SS, suggesting that translocated bacterial effectors suppress rather than cause the FliC-independent inflammatory response. Thus, we demonstrate that infection of intestinal epithelial cells by A/E pathogens can trigger an array of proinflammatory responses from epithelial cells through both FliC-dependent and -independent pathways, expanding our understanding of the innate epithelial response to infection by these pathogens.


2021 ◽  
Author(s):  
Ti-Dong Shan ◽  
Yue Han ◽  
Xue-Guo Sun ◽  
Yue-Ping Jiang ◽  
Li Chen

Abstract Objective: The problems caused by diabetes mellitus (DM) related complications are the focus in clinical treatment. However, little is known about diabetic enteropathy (DE) and its the potential underlying mechanism. Methods: Intestinal cells (IEC) and Intestinal stem cells (IESC) obtained from BKS.Cg-Dock7m+/+Leprdb/JNju (DM) mice were used to detect Rspo3 by RT-qPCR, western blotting, Immunohistochemistry, and immunofluorescence. The role of Rspo3 in the abnormal differentiation of IECs of DM was clarified by knockout experiments. Through miRNA expression profiles, bioinformatic analysis, and RT-qPCR, we further analyzed differentiation related miRNA from IECs in DM mice. Results: The abnormal differentiation of small intestinal epithelial cells (IECs) was found in DM state. The expression of R-spondin 3 (Rspo3) was upregulated in IECs of DM state. And this phenomenon was associated with R-spondin 3 (Rspo3) overexpression. Additionally, Rspo3 is a major determinant of Lgr5+ stem cell identity upon DM state. Microarray analysis, Bioinformatics analysis and luciferase reporter assays revealed that microRNA (miR)-380-5p was directly targeted Rspo3. Moreover, miR-380-5p upregulation was observed to attenuate the abnormal differentiation of IECs through Rspo3 expression. Conclusion: Together, our results provide definitive evidence for the essential role of Rspo3 in differentiation of small intestinal epithelial cells (IECs) in DM state.


2018 ◽  
Author(s):  
Zhengxiang He ◽  
Lili Chen ◽  
Glaucia C. Furtado ◽  
Sergio A. Lira

AbstractIL-33 is a cytokine found in the extracellular space (mature IL-33) or in the cell nucleus (full-length IL-33). Nuclear accumulation of IL-33 has been reported in intestinal epithelial cells (IEC) during intestinal inflammation and cancer, but a functional role for this nuclear form remains unclear. To study the role of nuclear IL-33inIEC, we generated transgenic mice expressing full-length IL-33inthe intestinal epithelium (Vfl33mice). Expression of full-length IL-33 in the epithelium resulted in accumulation of IL-33 protein in the nucleus and secretion of IL-33. Over-expression of full-length IL-33 by IEC did not promote gut inflammation, but induced expression of genes in the IEC and lamina propria lymphocytes (LPL) that correlated negatively with genes expressed in inflammatory bowel diseases (IBD). Because the IL-33 receptor ST2 is expressed by IEC, there was the potential that both the mature and full-length forms could mediate this effect. To specifically interrogate the transcriptional role of nuclear IL-33,weintercrossed theVfl33mice with ST2-deficient mice. ST2 deficiency completely abrogated the transcriptional effects elicited by IL-33 expression, suggesting that the transcriptional effects of IL-33 on IEC are mediated by its mature, not its nuclear form.HighlightsExpression of full-length IL-33 in the epithelium resulted in accumulation of IL-33 protein in the nucleus and secretion of IL-33.Full-length IL-33 induced differential gene expression in IEC and LPL that was negatively associated with intestinal inflammatory diseasesIL-33 regulated gene expression in IEC via its extracellular (mature) form not via its nuclearform.


2019 ◽  
Vol 317 (2) ◽  
pp. G98-G107 ◽  
Author(s):  
Sumeet Solanki ◽  
Samantha N. Devenport ◽  
Sadeesh K. Ramakrishnan ◽  
Yatrik M. Shah

Hypoxia is a notable feature of inflammatory bowel disease and chronic induction of hypoxia-inducible factor (HIF)-1α and HIF-2α (endothelial PAS domain protein 1, EPAS1) play important, but opposing, roles in its pathogenesis. While activation of HIF-1α decreases intestinal inflammation and is beneficial in colitis, activation of HIF-2α exacerbates colitis and increases colon carcinogenesis in animal models, primarily due to the role of epithelial HIF-2α in mounting a potent inflammatory response. Previous work from our laboratory showed that mice overexpressing intestinal epithelial HIF-2α led to massive intestinal inflammation and decreased survival. As oxygen homeostasis and HIFs are critical in embryonic development, it is not clear whether the observed intestinal inflammatory response was secondary to developmental defects. To address this question, the present study used a mouse model to temporally modulate expression of intestinal epithelial HIF-2α to assess its role in mediating inflammatory response. Remarkably, activation of HIF-2α in intestinal epithelial cells in adult mice increased expression of proinflammatory mediators; however, no decrease in survival was observed. Furthermore, in an acute model of colitis, activation of HIF-2α was sufficient to exacerbate colitis. These data confirm our previous finding that epithelial HIF-2α mediates inflammatory response and demonstrates that activation of HIF-2α is sufficient to exacerbate colitis.NEW & NOTEWORTHY Inflammatory bowel disease (IBD) is a chronic relapsing inflammatory disease of the intestinal tract. Hypoxia and activation of its downstream transcription factors hypoxia-inducible factor (HIF)-1α and HIF-2α are notable features of IBD. HIF-1α has well-characterized protective roles in IBD; however, the role of HIF-2α has been less studied. Using novel HIF-2α mouse models, we show that activation of HIF-2α in intestinal epithelial cells is sufficient to exacerbate colitis.


2009 ◽  
Vol 20 (20) ◽  
pp. 4412-4423 ◽  
Author(s):  
Arianne L. Theiss ◽  
Aaron K. Jenkins ◽  
Ngozi I. Okoro ◽  
Jan-Michael A. Klapproth ◽  
Didier Merlin ◽  
...  

Expression of prohibitin 1 (PHB), a multifunctional protein in the cell, is decreased during inflammatory bowel disease (IBD). Little is known regarding the regulation and role of PHB during intestinal inflammation. We examined the effect of tumor necrosis factor alpha (TNF-α), a cytokine that plays a central role in the pathogenesis of IBD, on PHB expression and the effect of sustained PHB expression on TNF-α activation of nuclear factor-kappa B (NF-κB) and epithelial barrier dysfunction, two hallmarks of intestinal inflammation. We show that TNF-α decreased PHB protein and mRNA abundance in intestinal epithelial cells in vitro and in colon mucosa in vivo. Sustained expression of prohibitin in intestinal epithelial cells in vitro and in vivo (prohibitin transgenic mice, PHB TG) resulted in a marked decrease in TNF-α–induced nuclear translocation of the NF-κB protein p65, NF-κB/DNA binding, and NF-κB–mediated transcriptional activation despite robust IκB-α phosphorylation and degradation and increased cytosolic p65. Cells overexpressing PHB were protected from TNF-α–induced increased epithelial permeability. Expression of importin α3, a protein involved in p50/p65 nuclear import, was decreased in cells overexpressing PHB and in colon mucosa of PHB TG mice. Restoration of importin α3 levels sustained NF-κB activation by TNF-α during PHB transfection. These results suggest that PHB inhibits NF-κB nuclear translocation via a novel mechanism involving alteration of importin α3 levels. TNF-α decreases PHB expression in intestinal epithelial cells and restoration of PHB expression in these cells can protect against the deleterious effects of TNF-α and NF-κB on barrier function.


2011 ◽  
Vol 301 (1) ◽  
pp. G9-G19 ◽  
Author(s):  
Seong-Joon Koh ◽  
Jung Mogg Kim ◽  
In-Kyoung Kim ◽  
Nayoung Kim ◽  
Hyun Chae Jung ◽  
...  

Although fluoxetine, a selective serotonin reuptake inhibitor, is known to demonstrate anti-inflammatory activity, little information is available on the effect of fluoxetine regarding intestinal inflammation. This study investigates the role of fluoxetine in the attenuation of acute murine colitis by suppression of the NF-κB pathway in intestinal epithelial cells (IEC). Fluoxetine significantly inhibited activated NF-κB signals and the upregulated expression of interleukin-8 (IL-8) in COLO 205 colon epithelial cells stimulated with tumor necrosis factor-α (TNF-α). Pretreatment with fluoxetine attenuated the increased IκB kinase (IKK) and IκBα phosphorylation induced by TNF-α. In a murine model, administration of fluoxetine significantly reduced the severity of dextran sulfate sodium (DSS)-induced colitis, as assessed by the disease activity index, colon length, and histology. In addition, the DSS-induced phospho-IKK activation, myeloperoxidase activity, a parameter of neutrophil accumulation, and the secretion of macrophage-inflammatory protein-2, a mouse homolog of IL-8, were significantly decreased in fluoxetine-pretreated mice. Moreover, fluoxetine significantly attenuated the development of colon cancer in mice inoculated with azoxymethane and DSS. These results indicate that fluoxetine inhibits NF-κB activation in IEC and that it ameliorates DSS-induced acute murine colitis and colitis-associated tumorigenesis, suggesting that fluoxetine is a potential therapeutic agent for the treatment of inflammatory bowel disease.


Sign in / Sign up

Export Citation Format

Share Document