Comparison of PLGA/Fibrin and PLGA/Hyaluronic Acid Scaffolds for Chondrogenesis of Human Adipose-Derived Stem Cells

Author(s):  
Zeinolabedin Sharifian ◽  
Batool Hashemibeni ◽  
Majid Pourentezari ◽  
Ali Valiani ◽  
Mohammad Mardani ◽  
...  

Background and Aims: Tissue engineering is a relatively novel field that has been intensely developing during recent years and has shown to be excessively promising when used for cartilage regeneration. Scaffolds represent important components for tissue engineering. Materials and Methods: The Poly Lactic-Co-Glycolic Acid (PLGA) impregnated with fibrin and hyaluronic acid (HA) produce hybrid scaffolds. human adipose-derived stem cells (hADSCs) were seeded in scaffolds and cultured in chondrogenic media. The viability of cells in different groups was assessed by MTT. The expression of chondrogenic related genes [Sox9, type II collagen (Col II), Aggrecan(AGG)] and type X collagen (Col X) was quantified by real-time polymerase chain reaction. Results: The results of the real-time PCR showed SOX9, AGG and Col X gene expression in the control groups being significantly lower than the other groups (p≤0.05). It also demonstrated Col II gene expression in the control group being significantly lower than the PLGA/Fibrin and PLGA/Fibrin/HA groups (p≤0.05). The Col X gene expression of cells in PLGA/HA and PLGA/Fibrin/HA groups significantly decreased in comparison with the PLGA/Fibrin group (p≤0.05). Conclusions: These conclusions indicate that administration of PLGA/ Fibrin and PLGA/HA scaffolds, particularly PLGA/Fibrin/ HA, motivates chondrogenesis in hADSCs. This can be diminished by decreasing hypertrophic markers and increasing characteristic markers of hyaline cartilage.

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Se-Joon Oh ◽  
Hee-Young Park ◽  
Kyung-Un Choi ◽  
Sung-Won Choi ◽  
Sung-Dong Kim ◽  
...  

Tissue engineering cell-based therapy using induced pluripotent stem cells and adipose-derived stem cells (ASCs) may be promising tools for therapeutic applications in tissue engineering because of their abundance, relatively easy harvesting, and high proliferation potential. The purpose of this study was to investigate whether ASCs can promote the auricular cartilage regeneration in the rabbit. In order to assess their differentiation ability, ASCs were injected into the midportion of a surgically created auricular cartilage defect in the rabbit. Control group was injected with normal saline. After 1 month, the resected auricles were examined histopathologically and immunohistochemically. The expression of collagen type II and transforming growth factor-β1 (TGF-β1) were analyzed by quantitative polymerase chain reaction. Histopathology showed islands of new cartilage formation at the site of the surgically induced defect in the ASC group. Furthermore, Masson’s trichrome staining and immunohistochemistry for S-100 showed numerous positive chondroblasts. The expression of collagen type II and TGF-β1 were significantly higher in the ASCs than in the control group. In conclusion, ASCs have regenerative effects on the auricular cartilage defect of the rabbit. These effects would be expected to contribute significantly to the regeneration of damaged cartilage tissue in vivo.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 902
Author(s):  
Madhumita Patel ◽  
Won-Gun Koh

Composite hydrogels with electrospun nanofibers (NFs) have recently been used to mimic the native extracellular matrix. In this study, composite hydrogels of methacrylated hyaluronic acid containing fragmented polycaprolactone NFs were used for bone tissue engineering. The composite (NF/hydrogel) was crosslinked under ultraviolet (UV) light. The incorporation of fragmented polycaprolactone NFs increased the compression modulus from 1762.5 to 3122.5 Pa. Subsequently, adipose-derived stem cells incorporated into the composite hydrogel exhibited a more stretched and elongated morphology and osteogenic differentiation in the absence of external factors. The mRNA expressions of osteogenic biomarkers, including collagen 1 (Col1), alkaline phosphatase, and runt-related transcription factor 2, were 3–5-fold higher in the composite hydrogel than in the hydrogel alone. In addition, results of the protein expression of Col1 and alizarin red staining confirmed osteogenic differentiation. These findings suggest that our composite hydrogel provides a suitable microenvironment for bone tissue engineering.


2018 ◽  
Vol 5 (4) ◽  
pp. 31 ◽  
Author(s):  
Maryam Samareh Salavati Pour ◽  
Fatemeh Hoseinpour Kasgari ◽  
Alireza Farsinejad ◽  
Ahmad Fatemi ◽  
Roohollah Mirzaee Khalilabadi

Introduction: Mesenchymal stem cells (MSCs) are widely studied due to their self- renewal potential and capacity to differentiate into multiple tissues. However, they have a limited life span of several divisions in vitro, which alters various cellular characteristics and reduces their application. Aim: We evaluated the effect of platelet-derived microparticles on gene expression of hTERT, one of the main factors involved in aging and cell longevity. Materials and methods: Umbilical cord MSCs were used for this study. Cells were characterized by evaluating morphology via inverted microscope and identifying associated surface markers using flow cytometry. Platelet-derived microparticles were prepared by centrifuging platelet bags at varying speeds, and their concen- trations were determined by Bradford assay. At 30% confluency, MSCs were treated with 50 μg/mL of microparticles for five days. Then, RNA was extracted and cDNA was synthesized. Quantitative expression of hTERT was assessed using real-time polymerase chain reaction (PCR). Results: Fibroblast-like cells were isolated from umbilical cord tissue and MSCs were identified by the presence of mesenchymal surface markers via flow cytometry. Real- time PCR showed that gene expression of hTERT increased by more than three times when treated with platelet-derived microparticles, in comparison to expression of the control group. Conclusion: We concluded that platelet-derived microparticles may be a potentially safe and effective method to increase hTERT gene expression in MSCs, ultimately prolonging their life span in vitro. 


2019 ◽  
Vol 9 (4) ◽  
pp. 662-667 ◽  
Author(s):  
Faraz Sigaroodi ◽  
Hajar Shafaei ◽  
Mohammad Karimipour ◽  
Mohammad Amin Dolatkhah ◽  
Abbas Delazar

Purpose: Natural biomaterials are a key base in tissue engineering, and collagen, as the maincontent of the extracellular matrix (ECM), is frequently used in tissue engineering. Aloe verahas some therapeutic effects on ulcers, therefore, the use of this natural resource has alwaysbeen considered for improving collagen function. We aimed to evaluate the effect of Aloe vera/Collagen blended on cell viability, cell attachment, and angiogenic potential by determining ofintegrin α1β1 and platelet endothelial cell adhesion molecule (PECAM-1) genes expression inhuman adipose-derived stem cells (hASCs).Methods: In this study, hASCs after harvesting of adipose tissues from abdominal subcutaneousadipose tissue and isolation, were cultured in four groups of control, collagen gel, Aloe veragel, and Aloe vera/collagen blended in vitro environment at 24h and then cell viability wasassessed by MTT (3-(4,5-dimethylthiazol 2-yl)-2,5-diphenyltetrazolium) assay. Integrin α1β1 andPECAM-1 genes expression were evaluated by real-time RT-PCR.Results: The results of MTT showed that the combination of Aloe vera/collagen was retained thecell viability at the normal range and improved it. In real-time RT-PCR results, integrin α1β1 andPECAM-1 gene expression were increased in the Aloe vera/collagen blended group comparedto the control group.Conclusion: For tissue engineering purposes, Aloe vera improves collagen properties in theculture of hASCs by increasing the expression of the integrin α1β1 and PECAM-1 genes.<br />


Author(s):  
Heather Cleary ◽  
Thomas Barkley ◽  
Adam Goodman ◽  
Michael Payne ◽  
John Virtue ◽  
...  

Lower back pain is one of the most common medical problems in the world [1], affecting between 70% and 85% of the US population at some point during their lives [2]. Disc degeneration is caused by biological changes in the disc, which result in dehydration of the nucleus pulposus (NP). The long term goal of this project is to treat disc degeneration with a tissue engineering strategy for the regeneration of the nucleus pulposus using messechymal stem cells derived from adipose tissue. It has been established in cartilage regeneration studies that cyclic compressive loading of stem cells is beneficial for tissue formation compared to static culture [3–7]. In this work, a bioreactor is being developed that can subject cell-seeded polymeric tissue engineering scaffolds to dynamic compressive forces. Ultimately, the bioreactor will be used to study the effects of different loading parameters on the production of new nucleus pulposus tissue from adipose-derived stem cells.


2020 ◽  
Vol 7 (4) ◽  
pp. 3697-3708
Author(s):  
Vy Thi-Kieu Tu ◽  
Ha Thi-Ngan Le ◽  
Xuan Hoang-Viet To ◽  
Phuc Dang-Ngoc Nguyen ◽  
Phat Duc Huynh ◽  
...  

Introduction: Cartilage damage is one of the injuries that is difficult for the human body to self-repair due to the avascular and completely mature tissue with only few stem or progenitor cells present. Recently, some studies showed that engineered cartilage tissues could be used to treat or improve this injury. This study aimed to produce the cartilage microtissues from the differentiation of scaffold-free spheroids composed of human adipose-derived stem cells. Methods: Human adipose-derived stem cells (ADSCs) were isolated and expanded following the previously published study. They were then cultured in the non-adherent condition to produce spheroids. The spheroids of the ADSCs were collected and induced into cartilage microtissues in the inducible medium for 21 days. The cartilage microtissue was characterized by some cartilage phenotype markers, including the accumulation of extracellular matrix proteins (aggrecan, glycosaminoglycan, and type II collagen), and the expression of certain genes specific to chondrocytes (Sox9, Col2, Col1, and Acan). Results: The results showed that the expression of chondrocyte-specific genes gradually increased during the 21 days of culture for differentiation. On day 21, the microtissues expressed aggrecan, glycosaminoglycan, and type II collagen proteins. Conclusion: This study demonstrated that cartilage microtissues could easily be produced from scaffold-free spheroids from ADSCs. Thus, cartilage microtissues can be produced in this manner for in vivo transplantation to promote cartilage regeneration, or to produce cartilage tissues for in vitro studies.  


2020 ◽  
Vol 11 (4) ◽  
pp. 11525-11534

Synthetic and naturally derived-biodegradable polymers have been applied extensively for scaffold fabrication for cartilage tissue engineering. Human adipose-derived stem cells (hADSCs) seeded in poly (lactic-co-glycolic) acid (PLGA) and PLGA/fibrin scaffolds and cultured in chondrogenic media containing Soybean Unsaponifiables (ASU). All constructs were cultured for 14 days. Cell viability was measured by MTT assay. Chondrogenic differentiation markers, including type II collagen (Coll II), Aggrecan (AGG), and SOX9, were detected by real-time PCR. Hypertrophic and Fibrous differentiation was also analyzed using gene expression type X (Coll X) and Ι (Coll Ι) collagen. The MTT results on the 14th day showed that the viability of hADSCs in the PLGA group was higher than the PLGAL/Fibrin group, but it was not significant. Real-time PCR results demonstrated that SOX9, Coll II, and AGG gene expression in the PLGA and PLGA/Fibrin groups are higher than the control group. The real-time PCR results indicated that Coll X in the PLGA/Fibrin group is lower than the PLGA and control groups. Also, Coll I gene expression in the PLGA group was higher in contrast with the control group. Administrating fibrin with a PLGA scaffold can induce chondrogenesis in hADSCs on chondrogenic media containing ASU.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Dongyan Huang ◽  
Rongguang Wang ◽  
Shiming Yang

Stem cells based tissue engineering has been one of the potential promising therapies in the research on the repair of tissue diseases including the vocal fold. Decellularized extracellular matrix (DCM) as a promising scaffold has be used widely in tissue engineering; however, it remained to be an important issue in vocal fold regeneration. Here, we applied the hydrogels (hyaluronic acid [HA], HA-collagen [HA-Col], and HA-DCM) to determine the effects of hydrogel on the growth and differentiation of human adipose-derived stem cells (hADSCs) into superficial lamina propria fibroblasts. hADSCs were isolated and characterized by fluorescence-activated cell sorting. The results indicated that HA-DCM hydrogel enhanced cell proliferation and prolonged cell morphology significantly compared to HA and HA-Col hydrogel. Importantly, the differentiation of hADSCs into fibroblasts was also promoted by cogels of HA-Col and HA-DCM significantly. The differentiation of hADSCs towards superficial lamina propria fibroblasts was accelerated by the secretion of HGF, IL-8, and VEGF, the decorin and elastin expression, and the synthesis of chondroitin sulfate significantly. Therefore, the cogel of HA-DCM hydrogel was shown to be outstanding in apparent stimulation of hADSCs proliferation and differentiation to vocal fold fibroblasts through secretion of important growth factors and synthesis of extracellular matrix.


Author(s):  
Isabele Camargo Brindo da Cruz ◽  
Ana Paula Pereira Velosa ◽  
Solange Carrasco ◽  
Antonio dos Santos Filho ◽  
Jurandir Tomaz de Miranda ◽  
...  

Collagen is essential for cartilage adhesion and formation. In the present study, histology, immunofluorescence, morphometry, and qRT-PCR suggested that adipose-derived stem cells (ADSCs) stimulated by type V collagen (Col V) induce a significant increase of type II collagen (Col II) in the degenerative area of surgical-induced osteoarthritic rabbit articular cartilage (OA). In vitro, the effects of Col V on the proliferation and differentiation of ADSC were investigated. The expression of the cartilage-related genes Col2a1 and Acan was significantly upregulated and Pou5fl was downregulated post-ADSC/Col V treatment. Post-ADSC/Col V treatment, in vivo analyses revealed that rabbits showed typical signs of osteoarthritic articular cartilage regeneration by hematoxylin and eosin (H&amp;E) and Safranin O/Fast Green staining. Immunohistochemical staining demonstrated that the volume of Col II fibers and the expression of Col II protein were significantly increased, and apoptosis Fas ligand positive significantly decreased post-ADSC/Col V treatment. In conclusion, the expression of Col II was higher in rabbits with surgical-induced osteoarthritic articular cartilage; hence, ADSC/Col V may be a promising therapeutic target for OA treatment.


Sign in / Sign up

Export Citation Format

Share Document