scholarly journals Numerical Simulation and Optimization of Enhanced Oil Recovery by the In Situ Generated CO2Huff-n-Puff Process with Compound Surfactant

2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Yong Tang ◽  
Zhengyuan Su ◽  
Jibo He ◽  
Fulin Yang

This paper presents the numerical investigation and optimization of the operating parameters of the in situ generated CO2Huff-n-Puff method with compound surfactant on the performance of enhanced oil recovery. First, we conducted experiments of in situ generated CO2and surfactant flooding. Next, we constructed a single-well radial 3D numerical model using a thermal recovery chemical flooding simulator to simulate the process of CO2Huff-n-Puff. The activation energy and reaction enthalpy were calculated based on the reaction kinetics and thermodynamic models. The interpolation parameters were determined through history matching a series of surfactant core flooding results with the simulation model. The effect of compound surfactant on the Huff-n-Puff CO2process was demonstrated via a series of sensitivity studies to quantify the effects of a number of operation parameters including the injection volume and mole concentration of the reagent, the injection rate, the well shut-in time, and the oil withdrawal rate. Based on the daily production rate during the period of Huff-n-Puff, a desirable agreement was shown between the field applications and simulated results.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Imran Akbar ◽  
Hongtao Zhou ◽  
Wei Liu ◽  
Muhammad Usman Tahir ◽  
Asadullah Memon ◽  
...  

In the petroleum industry, the researchers have developed a new technique called enhanced oil recovery to recover the remaining oil in reservoirs. Some reservoirs are very complex and require advanced enhanced oil recovery (EOR) techniques containing new materials and additives in order to produce maximum oil in economic and environmental friendly manners. In this work, the effects of nanosuspensions (KY-200) and polymer gel HPAM (854) on oil recovery and water cut were studied in the view of EOR techniques and their results were compared. The mechanism of nanosuspensions transportation through the sand pack was also discussed. The adopted methodology involved the preparation of gel, viscosity test, and core flooding experiments. The optimum concentration of nanosuspensions after viscosity tests was used for displacement experiments and 3 wt % concentration of nanosuspensions amplified the oil recovery. In addition, high concentration leads to more agglomeration; thus, high core plugging takes place and diverts the fluid flow towards unswept zones to push more oil to produce and decrease the water cut. Experimental results indicate that nanosuspensions have the ability to plug the thief zones of water channeling and can divert the fluid flow towards unswept zones to recover the remaining oil from the reservoir excessively rather than the normal polymer gel flooding. The injection pressure was observed higher during nanosuspension injection than polymer gel injection. The oil recovery was achieved by about 41.04% from nanosuspensions, that is, 14.09% higher than polymer gel. Further investigations are required in the field of nanoparticles applications in enhanced oil recovery to meet the world's energy demands.


2018 ◽  
Vol 40 (2) ◽  
pp. 85-90
Author(s):  
Yani Faozani Alli ◽  
Edward ML Tobing ◽  
Usman Usman

The formation of microemulsion in the injection of surfactant at chemical flooding is crucial for the effectiveness of injection. Microemulsion can be obtained either by mixing the surfactant and oil at the surface or injecting surfactant into the reservoir to form in situ microemulsion. Its translucent homogeneous mixtures of oil and water in the presence of surfactant is believed to displace the remaining oil in the reservoir. Previously, we showed the effect of microemulsion-based surfactant formulation to reduce the interfacial tension (IFT) of oil and water to the ultralow level that suffi cient enough to overcome the capillary pressure in the pore throat and mobilize the residual oil. However, the effectiveness of microemulsion flooding to enhance the oil recovery in the targeted representative core has not been investigated.In this article, the performance of microemulsion-based surfactant formulation to improve the oil recovery in the reservoir condition was investigated in the laboratory scale through the core flooding experiment. Microemulsion-based formulation consist of 2% surfactant A and 0.85% of alkaline sodium carbonate (Na2CO3) were prepared by mixing with synthetic soften brine (SSB) in the presence of various concentration of polymer for improving the mobility control. The viscosity of surfactant-polymer in the presence of alkaline (ASP) and polymer drive that used for chemical injection slug were measured. The tertiary oil recovery experiment was carried out using core flooding apparatus to study the ability of microemulsion-based formulation to recover the oil production. The results showed that polymer at 2200 ppm in the ASP mixtures can generate 12.16 cP solution which is twice higher than the oil viscosity to prevent the fi ngering occurrence. Whereas single polymer drive at 1300 ppm was able to produce 15.15 cP polymer solution due to the absence of alkaline. Core flooding experiment result with design injection of 0.15 PV ASP followed by 1.5 PV polymer showed that the additional oil recovery after waterflood can be obtained as high as 93.41% of remaining oil saturation after waterflood (Sor), or 57.71% of initial oil saturation (Soi). Those results conclude that the microemulsion-based surfactant flooding is the most effective mechanism to achieve the optimum oil recovery in the targeted reservoir.


SPE Journal ◽  
2016 ◽  
Vol 21 (04) ◽  
pp. 1075-1085 ◽  
Author(s):  
Robert Fortenberry ◽  
Pearson Suniga ◽  
Mojdeh Delshad ◽  
Bharat Singh ◽  
Hassan A. AlKaaoud ◽  
...  

Summary Single-well-partitioning-tracer tests (SWTTs) are used to measure the saturation of oil or water near a wellbore. If used before and after injection of enhanced-oil-recovery (EOR) fluids, they can evaluate EOR flood performance in a so-called one-spot pilot. Four alkaline/surfactant/polymer (ASP) one-spot pilots were recently completed in Kuwait's Sabriyah-Mauddud (SAMA) reservoir, a thick, heterogeneous carbonate operated by Kuwait Oil Company (KOC). UTCHEM (Delshad et al. 2013), the University of Texas chemical-flooding reservoir simulator, was used to interpret results of two of these one-spot pilots performed in an unconfined zone within the thick SAMA formation. These simulations were used to design a new method for injecting partitioning tracers for one-spot pilots. The recommended practice is to inject the tracers into a relatively uniform confined zone, but, as seen in this work, that is not always possible, so an alternative design was needed to improve the accuracy of the test. The simulations showed that there was a flow-conformance problem when the partitioning tracers were injected into a perforated zone without confinement after the viscous ASP and polymer-drive solutions. The water-conveyed-tracer solutions were being partially diverted outside of the ASP-swept zone where they contacted unswept oil. Because of this problem, the initial interpretation of the performance of the chemicals was pessimistic, overestimating the chemical residual oil saturation (ROS) by up to 12 saturation units. Additional simulations indicated that the oil saturation in the ASP-swept zone could be properly estimated by avoiding the post-ASP waterflood and injecting the post-ASP tracers in a viscous polymer solution rather than in water. An ASP one-spot pilot using the new SWTT design resulted in an estimated ROS of only 0.06 after injection of chemicals (Carlisle et al. 2014). These saturation values were obtained by history matching tracer-production data by use of both traditional continuously-stirred-tank (CSTR) models and compositional, reactive-transport reservoir models. The ability of the simulator to model every phase of the one-spot pilot operation was crucial to the insight of modified SWTT design. The waterflood, first SWTT, ASP flood, and the final SWTT were simulated using a heterogeneous permeability field representative of the Mauddud formation. Laboratory data, field-ASP quality-control information, and injection strategy were all accounted for in these simulations. We describe the models, how they were used, and how the results were used to modify the SWTT design. We further discuss the implications for other SWTTs. The advantage of mechanistic simulation of multiple aspects of a one-spot pilot is an important theme of this study. Because the pore space investigated by the SWTTs can be affected by the previously injected EOR fluids (and vice versa), these interactions should be accounted for. This simulation approach can be used to identify and mitigate design problems during each phase of a challenging one-spot pilot.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Hamed Hematpur ◽  
Reza Abdollahi ◽  
Mohsen Safari-Beidokhti ◽  
Hamid Esfandyari

The growing demand for clean energy can be met by improving the recovery of current resources. One of the effective methods in recovering the unswept reserves is chemical flooding. Microemulsion flooding is an alternative for surfactant flooding in a chemical-enhanced oil recovery method and can entirely sweep the remaining oil in porous media. The efficiency of microemulsion flooding is guaranteed through phase behavior analysis and customization regarding the actual field conditions. Reviewing the literature, there is a lack of experience that compared the macroscopic and microscopic efficiency of microemulsion flooding, especially in low viscous oil reservoirs. In the current study, one-quarter five-spot glass micromodel was implemented for investigating the effect of different parameters on microemulsion efficiency, including surfactant types, injection rate, and micromodel pattern. Image analysis techniques were applied to represent the phase saturations throughout the microemulsion flooding tests. The results confirm the appropriate efficiency of microemulsion flooding in improving the ultimate recovery. LABS microemulsion has the highest efficiency, and the increment of the injection rate has an adverse effect on oil recovery. According to the pore structure’s tests, it seems that permeability has little impact on recovery. The results of this study can be used in enhanced oil recovery designs in low-viscosity oil fields. It shows the impact of crucial parameters in microemulsion flooding.


Author(s):  
A. Koto

The objective of this paper is to determine the optimum anaerobic-thermophilic bacterium injection (Microbial Enhanced Oil Recovery) parameters using commercial simulator from core flooding experiments. From the previous experiment in the laboratory, Petrotoga sp AR80 microbe and yeast extract has been injected into core sample. The result show that the experiment with the treated microbe flooding has produced more oil than the experiment that treated by brine flooding. Moreover, this microbe classified into anaerobic thermophilic bacterium due to its ability to live in 80 degC and without oxygen. So, to find the optimum parameter that affect this microbe, the simulation experiment has been conducted. The simulator that is used is CMG – STAR 2015.10. There are five scenarios that have been made to forecast the performance of microbial flooding. Each of this scenario focus on the injection rate and shut in periods. In terms of the result, the best scenario on this research can yield an oil recovery up to 55.7%.


2001 ◽  
Vol 4 (06) ◽  
pp. 455-466 ◽  
Author(s):  
A. Graue ◽  
T. Bognø ◽  
B.A. Baldwin ◽  
E.A. Spinler

Summary Iterative comparison between experimental work and numerical simulations has been used to predict oil-recovery mechanisms in fractured chalk as a function of wettability. Selective and reproducible alteration of wettability by aging in crude oil at an elevated temperature produced chalk blocks that were strongly water-wet and moderately water-wet, but with identical mineralogy and pore geometry. Large scale, nuclear-tracer, 2D-imaging experiments monitored the waterflooding of these blocks of chalk, first whole, then fractured. This data provided in-situ fluid saturations for validating numerical simulations and evaluating capillary pressure- and relative permeability-input data used in the simulations. Capillary pressure and relative permeabilities at each wettability condition were measured experimentally and used as input for the simulations. Optimization of either Pc-data or kr-curves gave indications of the validity of these input data. History matching both the production profile and the in-situ saturation distribution development gave higher confidence in the simulations than matching production profiles only. Introduction Laboratory waterflood experiments, with larger blocks of fractured chalk where the advancing waterfront has been imaged by a nuclear tracer technique, showed that changing the wettability conditions from strongly water-wet to moderately water-wet had minor impact on the the oil-production profiles.1–3 The in-situ saturation development, however, was significantly different, indicating differences in oil-recovery mechanisms.4 The main objective for the current experiments was to determine the oil-recovery mechanisms at different wettability conditions. We have reported earlier on a technique that reproducibly alters wettability in outcrop chalk by aging the rock material in stock-tank crude oil at an elevated temperature for a selected period of time.5 After applying this aging technique to several blocks of chalk, we imaged waterfloods on blocks of outcrop chalk at different wettability conditions, first as a whole block, then when the blocks were fractured and reassembled. Earlier work reported experiments using an embedded fracture network,4,6,7 while this work also studied an interconnected fracture network. A secondary objective of these experiments was to validate a full-field numerical simulator for prediction of the oil production and the in-situ saturation dynamics for the waterfloods. In this process, the validity of the experimentally measured capillary pressure and relative permeability data, used as input for the simulator, has been tested at strongly water-wet and moderately water-wet conditions. Optimization of either Pc data or kr curves for the chalk matrix in the numerical simulations of the whole blocks at different wettabilities gave indications of the data's validity. History matching both the production profile and the in-situ saturation distribution development gave higher confidence in the simulations of the fractured blocks, in which only the fracture representation was a variable. Experimental Rock Material and Preparation. Two chalk blocks, CHP8 and CHP9, approximately 20×12×5 cm thick, were obtained from large pieces of Rørdal outcrop chalk from the Portland quarry near Ålborg, Denmark. The blocks were cut to size with a band saw and used without cleaning. Local air permeability was measured at each intersection of a 1×1-cm grid on both sides of the blocks with a minipermeameter. The measurements indicated homogeneous blocks on a centimeter scale. This chalk material had never been contacted by oil and was strongly water-wet. The blocks were dried in a 90°C oven for 3 days. End pieces were mounted on each block, and the whole assembly was epoxy coated. Each end piece contained three fittings so that entering and exiting fluids were evenly distributed with respect to height. The blocks were vacuum evacuated and saturated with brine containing 5 wt% NaCl+3.8 wt% CaCl2. Fluid data are found in Table 1. Porosity was determined from weight measurements, and the permeability was measured across the epoxy-coated blocks, at 2×10–3 µm2 and 4×10–3 µm2, for CHP8 and CHP9, respectively (see block data in Table 2). Immobile water saturations of 27 to 35% pore volume (PV) were established for both blocks by oilflooding. To obtain uniform initial water saturation, Swi, oil was injected alternately at both ends. Oilfloods of the epoxy-coated block, CHP8, were carried out with stock-tank crude oil in a heated pressure vessel at 90°C with a maximum differential pressure of 135 kPa/cm. CHP9 was oilflooded with decane at room temperature. Wettability Alteration. Selective and reproducible alteration of wettability, by aging in crude oil at elevated temperatures, produced a moderately water-wet chalk block, CHP8, with similar mineralogy and pore geometry to the untreated strongly water-wet chalk block CHP9. Block CHP8 was aged in crude oil at 90°C for 83 days at an immobile water saturation of 28% PV. A North Sea crude oil, filtered at 90°C through a chalk core, was used to oilflood the block and to determine the aging process. Two twin samples drilled from the same chunk of chalk as the cut block were treated similar to the block. An Amott-Harvey test was performed on these samples to indicate the wettability conditions after aging.8 After the waterfloods were terminated, four core plugs were drilled out of each block, and wettability measurements were conducted with the Amott-Harvey test. Because of possible wax problems with the North Sea crude oil used for aging, decane was used as the oil phase during the waterfloods, which were performed at room temperature. After the aging was completed for CHP8, the crude oil was flushed out with decahydronaphthalene (decalin), which again was flushed out with n-decane, all at 90°C. Decalin was used as a buffer between the decane and the crude oil to avoid asphalthene precipitation, which may occur when decane contacts the crude oil.


2021 ◽  
Author(s):  
Yongsheng Tan ◽  
Qi Li ◽  
Liang Xu ◽  
Xiaoyan Zhang ◽  
Tao Yu

<p>The wettability, fingering effect and strong heterogeneity of carbonate reservoirs lead to low oil recovery. However, carbon dioxide (CO<sub>2</sub>) displacement is an effective method to improve oil recovery for carbonate reservoirs. Saturated CO<sub>2</sub> nanofluids combines the advantages of CO<sub>2</sub> and nanofluids, which can change the reservoir wettability and improve the sweep area to achieve the purpose of enhanced oil recovery (EOR), so it is a promising technique in petroleum industry. In this study, comparative experiments of CO<sub>2</sub> flooding and saturated CO<sub>2</sub> nanofluids flooding were carried out in carbonate reservoir cores. The nuclear magnetic resonance (NMR) instrument was used to clarify oil distribution during core flooding processes. For the CO<sub>2</sub> displacement experiment, the results show that viscous fingering and channeling are obvious during CO<sub>2</sub> flooding, the oil is mainly produced from the big pores, and the residual oil is trapped in the small pores. For the saturated CO<sub>2</sub> nanofluids displacement experiment, the results show that saturated CO<sub>2</sub> nanofluids inhibit CO<sub>2</sub> channeling and fingering, the oil is produced from the big pores and small pores, the residual oil is still trapped in the small pores, but the NMR signal intensity of the residual oil is significantly reduced. The final oil recovery of saturated CO<sub>2</sub> nanofluids displacement is higher than that of CO<sub>2</sub> displacement. This study provides a significant reference for EOR in carbonate reservoirs. Meanwhile, it promotes the application of nanofluids in energy exploitation and CO<sub>2</sub> utilization.</p>


Sign in / Sign up

Export Citation Format

Share Document