scholarly journals Parametric Investigation and Thermoeconomic Optimization of a Combined Cycle for Recovering the Waste Heat from Nuclear Closed Brayton Cycle

2016 ◽  
Vol 2016 ◽  
pp. 1-12
Author(s):  
Lihuang Luo ◽  
Hong Gao ◽  
Chao Liu ◽  
Xiaoxiao Xu

A combined cycle that combines AWM cycle with a nuclear closed Brayton cycle is proposed to recover the waste heat rejected from the precooler of a nuclear closed Brayton cycle in this paper. The detailed thermodynamic and economic analyses are carried out for the combined cycle. The effects of several important parameters, such as the absorber pressure, the turbine inlet pressure, the turbine inlet temperature, the ammonia mass fraction, and the ambient temperature, are investigated. The combined cycle performance is also optimized based on a multiobjective function. Compared with the closed Brayton cycle, the optimized power output and overall efficiency of the combined cycle are higher by 2.41% and 2.43%, respectively. The optimized LEC of the combined cycle is 0.73% lower than that of the closed Brayton cycle.

2020 ◽  
Vol 10 (3) ◽  
pp. 1129 ◽  
Author(s):  
Mohammad Saad Salim ◽  
Muhammad Saeed ◽  
Man-Hoe Kim

This paper presents performance analysis results on supercritical carbon dioxide ( s C O 2 ) re-compression Brayton cycle. Monthly exergy destruction analysis was conducted to find the effects of different ambient and water temperatures on the performance of the system. The results reveal that the gas cooler is the major source of exergy destruction in the system. The total exergy destruction has the lowest value of 390.1   kW when the compressor inlet temperature is near the critical point (at 35 °C) and the compressor outlet pressure is comparatively low ( 24   MPa ). The optimum mass fraction (x) and efficiency of the cycle increase with turbine inlet temperature. The highest efficiency of 49% is obtained at the mass fraction of x = 0.74 and turbine inlet temperature of 700 °C. For predicting the cost of the system, the total heat transfer area coefficient ( U A T o t a l ) and size parameter (SP) are used. The U A T o t a l value has the maximum for the split mass fraction of 0.74 corresponding to the maximum value of thermal efficiency. The SP value for the turbine is 0.212 dm at the turbine inlet temperature of 700 °C and it increases with increasing turbine inlet temperature. However the SP values of the main compressor and re-compressor increase with increasing compressor inlet temperature.


2013 ◽  
Vol 17 (2) ◽  
pp. 497-508 ◽  
Author(s):  
Thamir Ibrahim ◽  
M.M. Rahman

The thermodynamic analyses of the triple-pressure reheat combined cycle gas turbines with duct burner are presented and discussed in this paper. The overall performance of a combined cycle gas turbine power plant is influenced by the ambient temperature, compression ratio and turbine inlet temperature. These parameters affect the overall thermal efficiency, power output and the heat-rate. In this study a thermodynamic model was development on an existing actual combined cycle gas turbine (CCGT) (In this case study, an effort has been made to enhance the performance of the CCGT through a parametric study using a thermodynamic analysis. The effect of ambient temperature and operation parameter, including compression ratio and turbine inlet temperature, on the overall performance of CCGT are investigated. The code of the performance model for CCGT power plant was developed utilizing the THERMOFLEX software. The simulating results show that the total power output and overall efficiency of a CCGT decrease with increase the ambient temperature because increase the consumption power in the air compressor of a GT. The totals power of a CCGT decreases with increase the compression rate, while the overall efficiency of a CCGT increases with increase the compression ratio to 21, after that the overall efficiency will go down. Far there more the turbine inlet temperature increases the both total power and overall efficiency increase, so the turbine inlet temperature has a strong effect on the overall performance of CCGT power plant. Also the simulation model give a good result compared with MARAFIQ CCGT power plant. With these variables, the turbine inlet temperature causes the greatest overall performance variation.


Author(s):  
H. J. Yang ◽  
D. W. Kang ◽  
J. H. Ahn ◽  
T. S. Kim

This study aims to present various design aspects and realizable performance of the natural gas fired semi-closed oxy-fuel combustion combined cycle (SCOC-CC). Design parameters of the cycle are set up on the basis of component technologies of today’s state-of-the-art gas turbines with a turbine inlet temperature between 1400°C and 1600°C. The most important part in the cycle analysis is the turbine cooling which affects the cycle performance considerably. A thermodynamic cooling model is introduced to predict the reasonable amount of turbine coolant to maintain the turbine blade temperature of the SCOC-CC at the levels of those of conventional gas turbines. Optimal pressure ratio ranges of the SCOC-CC for two different turbine inlet temperature levels are searched. The performance penalty due to the CO2 capture is examined. Also investigated are the influences of the purity of oxygen provided by the air separation unit on the cycle performance. A comparison with the conventional combined cycle adopting a post-combustion CO2 capture is carried out taking into account the relationship between performance and CO2 capture rate.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1551
Author(s):  
Jinghang Liu ◽  
Aofang Yu ◽  
Xinxing Lin ◽  
Wen Su ◽  
Shaoduan Ou

In the waste heat recovery of the internal combustion engine (ICE), the transcritical CO2 power cycle still faces the high operation pressure and difficulty in condensation. To overcome these challenges, CO2 is mixed with organic fluids to form zeotropic mixtures. Thus, in this work, five organic fluids, namely R290, R600a, R600, R601a, and R601, are mixed with CO2. Mixture performance in the waste heat recovery of ICE is evaluated, based on two transcritical power cycles, namely the recuperative cycle and split cycle. The results show that the split cycle always has better performance than the recuperative cycle. Under design conditions, CO2/R290(0.3/0.7) has the best performance in the split cycle. The corresponding net work and cycle efficiency are respectively 21.05 kW and 20.44%. Furthermore, effects of key parameters such as turbine inlet temperature, turbine inlet pressure, and split ratio on the cycle performance are studied. With the increase of turbine inlet temperature, the net works of the recuperative cycle and split cycle firstly increase and then decrease. There exist peak values of net work in both cycles. Meanwhile, the net work of the split cycle firstly increases and then decreases with the increase of the split ratio. Thereafter, with the target of maximizing net work, these key parameters are optimized at different mass fractions of CO2. The optimization results show that CO2/R600 obtains the highest net work of 27.43 kW at the CO2 mass fraction 0.9 in the split cycle.


Author(s):  
Thamir K. Ibrahim ◽  
M.M. Rahman

The combined cycle gas-turbine (CCGT) power plant is a highly developed technology which generates electrical power at high efficiencies. The first law of thermodynamics is used for energy analysis of the performance of the CCGT plant. The effects of varying the operating conditions (ambient temperature, compression ratio, turbine inlet temperature, isentropic compressor and turbine efficiencies, and mass flow rate of steam) on the performance of the CCGT (overall efficiency and total output power) were investigated. The programming of the performance model for CCGT was developed utilizing MATLAB software. The simulation results for CCGT show that the overall efficiency increases with increases in the compression ratio and turbine inlet temperature and with decreases in ambient temperature. The total power output increases with increases in the compression ratio, ambient temperature, and turbine inlet temperature. The peak overall efficiency was reached with a higher compression ratio and low ambient temperature. The overall efficiencies for CCGT were very high compared to the thermal efficiency of GT plants. The overall thermal efficiency of the CCGT quoted was around 57%; hence, the compression ratios, ambient temperature, turbine inlet temperature, isentropic compressor and turbine efficiencies, and mass flow rate of steam have a strong influence on the overall performance of the CCGT cycle.


Author(s):  
Seong Kuk Cho ◽  
Minseok Kim ◽  
Seungjoon Baik ◽  
Yoonhan Ahn ◽  
Jeong Ik Lee

The supercritical CO2 (S-CO2) power cycle has been receiving attention as one of the future power cycle technology because of its compact configuration and high thermal efficiency at relatively low turbine inlet temperature ranges (450∼750°C). Thus, this low turbine inlet temperature can be suitable for the bottoming cycle of a combined cycle gas turbine because its exhaust temperature range is approximately 500∼600°C. The natural gas combined cycle power plant utilizes mainly steam Rankine cycle as a bottoming cycle to recover waste heat from a gas turbine. To improve the current situation with the S-CO2 power cycle technology, the research team collected various S-CO2 cycle layouts and compared each performance. Finally, seven cycle layouts were selected as a bottoming power system. In terms of the net work, each cycle was evaluated while the mass flow rate, the split flow rate and the minimum pressure were changed. The existing well-known S-CO2 cycle layouts are unsuitable for the purpose of a waste heat recovery system because it is specialized for a nuclear application. Therefore, the concept to combine two S-CO2 cycles was suggested in this paper. Also the complex single S-CO2 cycles are included in the study to explore its potential. As a result, the net work of the concept to combine two S-CO2 cycles was lower than that of the performance of the reference steam cycle. On the other hand, the cascade S-CO2 Brayton cycle 3 which is one of the complex single cycles was the only cycle to be superior to the reference steam cycle. This result shows the possibility of the S-CO2 bottoming cycle if component technologies become mature enough to realize the assumptions in this paper.


Author(s):  
Branko Stankovic

This concept shows that an efficient combined cycle, comprising topping & bottoming cycle, does not have to be privilege of gas turbine plants only, but could also be achieved with steam turbine plants. An efficient power-producing concept of a combined steam-turbine cycle with addition of a recirculating steam compressor is disclosed. Topping part of such a combined steam-turbine cycle operates at elevated steam turbine inlet temperature and pressure, while its “waste heat” is recovered by the bottoming part of the combined cycle in a heat-recovery boiler (steam heat exchanger). The recirculating steam compressor pumps the cooled majority of the entire steam flow to the maximum cycle pressure, while smaller steam flow fraction continues its full expansion to some low pressure in a condenser. The cycle waste heat could be transferred to the bottoming part of the combined cycle in a variety of modalities, depending on the chosen main high-temperature steam-turbine inlet temperature and inlet pressure (supercritical/subcritical). At an assumed constant steam-turbine inlet temperature of 900°C (∼300 bar), a very high gross cycle thermal efficiency could potentially be achieved, ranging from 56 to 62% with the high-temperature steam-turbine pressure ranging from subcritical (30 bar) to supercritical (300 bar). Such a combined steam-turbine cycle seems to be a suitable energy conversion concept that could be applied in classic thermal power plants powered by coal, but also seems as an ideal option for application in the new generation of gas-cooled nuclear rectors, where the gaseous reactor coolant, heated up to 1000°C, would indirectly transfer its heat content to working fluid (superheated steam) of the topping part of the combined steam-turbine cycle. Alternatively, the proposed concept may be combined with renewable energy sources of a sufficient temperature level.


Author(s):  
H. J. Yang ◽  
D. W. Kang ◽  
J. H. Ahn ◽  
T. S. Kim

This study aims to present various design aspects and realizable performance of the natural gas fired semi-closed oxy-fuel combustion combined cycle (SCOC-CC). The design parameters of the cycle are set up on the basis of the component technologies of today’s state-of-the-art gas turbines with a turbine inlet temperature between 1400 °C and 1600 °C. The most important part of the cycle analysis is the turbine cooling, which considerably affects the cycle performance. A thermodynamic cooling model is introduced in order to predict the reasonable amount of turbine coolant needed to maintain the turbine blade temperature of the SCOC-CC at the levels of those of conventional gas turbines. The optimal pressure ratio ranges of the SCOC-CC for two different turbine inlet temperature levels are researched. The performance penalty due to the CO2 capture is examined. The influences of the purity of the oxygen provided by the air separation unit on the cycle performance are also investigated. A comparison with the conventional combined cycle, adopting a postcombustion CO2 capture, is carried out, taking into account the relationship between the performance and the CO2 capture rate.


Author(s):  
Katsuyoshi Tada ◽  
Kei Inoue ◽  
Tomo Kawakami ◽  
Keijiro Saitoh ◽  
Satoshi Tanimura

Gas-turbine combined-cycle (GTCC) power generation is clean and efficient, and its demand will increase in the future from economic and social perspectives. Raising turbine inlet temperature is an effective way to increase combined cycle efficiency and contributes to global environmental conservation by reducing CO2 emissions and preventing global warming. However, increasing turbine inlet temperature can lead to the increase of NOx emissions, depletion of the ozone layer and generation of photochemical smog. To deal with this issue, MHPS (MITSUBISHI HITACHI POWER SYSTEMS) and MHI (MITSUBISHI HEAVY INDUSTRIES) have developed Dry Low NOx (DLN) combustion techniques for high temperature gas turbines. In addition, fuel flexibility is one of the most important features for DLN combustors to meet the requirement of the gas turbine market. MHPS and MHI have demonstrated DLN combustor fuel flexibility with natural gas (NG) fuels that have a large Wobbe Index variation, a Hydrogen-NG mixture, and crude oils.


Author(s):  
Hideto Moritsuka

In order to estimate the possibility to improve thermal efficiency of power generation use gas turbine combined cycle power generation system, benefits of employing the advanced gas turbine technologies proposed here have been made clear based on the recently developed 1500C-class steam cooling gas turbine and 1300C-class reheat cycle gas turbine combined cycle power generation systems. In addition, methane reforming cooling method and NO reducing catalytic reheater are proposed. Based on these findings, the Maximized efficiency Optimized Reheat cycle Innovative Gas Turbine Combined cycle (MORITC) Power Generation System with the most effective combination of advanced technologies and the new devices have been proposed. In case of the proposed reheat cycle gas turbine with pressure ratio being 55, the high pressure turbine inlet temperature being 1700C, the low pressure turbine inlet temperature being 800C, combined with the ultra super critical pressure, double reheat type heat recovery Rankine cycle, the thermal efficiency of combined cycle are expected approximately 66.7% (LHV, generator end).


Sign in / Sign up

Export Citation Format

Share Document