scholarly journals Feasibility of Reprocessing Natural Fiber Filled Poly(lactic acid) Composites: An In-Depth Investigation

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Sujal Bhattacharjee ◽  
Dilpreet S. Bajwa

Poly(lactic acid) (PLA) based composites are biodegradable; their disposal after single use may be needless and uneconomical. Prodigal disposal of these composites could also create an environmental concern and additional demand for biobased feedstock. Under these circumstances, recycling could be an effective solution, since it will widen the composite service life and prevent the excessive use of natural resources. This research investigates an in-depth impact of recycling on the mechanical and thermomechanical properties of oak wood flour based PLA composites. Two composite formulations (30 and 50 wt% filler), each with 3 wt% coupling agent (PLA-g-MA), were produced and reprocessed six times by extrusion followed by injection molding. Measurements of fiber length and molecular weight of polymer were, respectively, carried out by gel permeation chromatography (GPC). Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FTIR) tools were used to study morphological and molecular alterations. With consecutive recycling, PLA composites showed a gradual decrease in strength and stiffness properties and an increase in strain properties. The 50% and 30% filler concentration of fibers in the composite showed an abrupt decrease in strength properties after six and two reprocessing cycles, respectively.

Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1963 ◽  
Author(s):  
Marcin Borowicz ◽  
Joanna Paciorek-Sadowska ◽  
Marek Isbrandt ◽  
Łukasz Grzybowski ◽  
Bogusław Czupryński

The article concerns the use of glycerolysis reaction as an alternative method of processing post-production and post-consumer waste from poly(lactic acid) (PLA). Management of waste is a very important issue from an environmental protection and economic point of view. Extending the “life cycle” of PLA is extremely important because it allows to make the most of this material. It also limits economic losses resulting from its disposal in the biodegradation process at the same time. This paper presents a method of glycerolysis of poly(lactic acid) waste using various amounts of anhydrous glycerol (mass ratio from 0.3 to 0.5 parts by weight of glycerol per 1.0 part by weight of PLA). This process was also carried out for pure, unmodified PLA Ingeo® (from NatureWorks) to compare the obtained results. The six liquid oligomeric polyhydric alcohols were obtained as a result of the synthesis. Then, they were subjected to physicochemical tests such as determination of color, smell, density, viscosity, and pH. In addition, the obtained raw materials were subjected to analytical tests such as determination of the hydroxyl value, acid value, water content, and elemental composition. The average molecular weights and dispersity were also tested by gel permeation chromatography (GPC). The assumed chemical structure of the obtained compounds was confirmed by spectroscopic methods such as FTIR, 1H NMR, 13C NMR. Glycerolysis products were also subjected to differential scanning calorimetry (DSC) to determine thermal parameters. The obtained research results have allowed the precise characterization of newly obtained products and determination of their suitability, e.g., for the synthesis of polyurethane (PUR) materials.


2017 ◽  
Vol 37 (9) ◽  
pp. 897-909
Author(s):  
Li Zhang ◽  
Weijun Zhen ◽  
Yufang Zhou

Abstract Poly(lactic acid) (PLA) was synthesized using a green catalyst, nano-zinc oxide (ZnO). The optimum synthesis conditions of PLA were as follows: a stoichiometric amount of 0.5 wt% of nano-ZnO, polymerization time of 14 h, and polymerization temperature of 170°C. Gel permeation chromatography results showed that the weight-average molecular weight (Mw) of PLA was 13,072 g/mol with a polydispersity index (PDI) of 1.7. Furthermore, PLA-α-cyclodextrin inclusion compounds (PLA-CD-ICs) were prepared by ultrasonic co-precipitation techniques. X-ray diffraction analysis and Fourier transform infrared spectroscopy demonstrated the change in lattice of α-CD from a cage configuration to a tunnel structure and the existence of some physical interactions between α-CD and PLA in the PLA-CD-ICs. To enhance the crystallization properties of PLA, PLA/PLA-CD-IC composites were blended with different contents of PLA-CD-ICs as nucleating agents. The crystallization behavior and comprehensive performance were investigated by differential scanning calorimetry, polarized optical microscopy, tensile testing, dynamic mechanical analysis, and scanning electron microscopy. Compared to PLA, the crystallinities of PLA/PLA-CD-IC composites were increased by 24.0%, 26.3%, 27.3%, and 31.8%. The results of all the analyses proved that PLA-CD-ICs were useful as green organic nucleators and improved the comprehensive performance of PLA materials.


2018 ◽  
Vol 52 (19) ◽  
pp. 2641-2650 ◽  
Author(s):  
U Saeed ◽  
MA Nawaz ◽  
HA Al-Turaif

The advanced development of biocomposites made of biodegradable polymers and natural fibers has initiated great interest because the resultant polymer will degrade absolutely and will not emit toxic substances. Among the biodegradable polymers, the poly(butylene succinate) and poly(lactic acid) have diverse commercial applications and the natural fiber such as wood flour is renewable and cheaper alternative to synthetic fiber. The properties of the composite made of poly(butylene succinate)/poly(lactic acid) blend and wood flour are not compatible due to the poor wettability and interfacial adhesion. Therefore, in the study presented, the Fusabond MB 100 D has been used to improve the interfacial bonding between poly(butylene succinate)/poly(lactic acid) blend and the dispersed wood flour. The results reveal that the addition of FB not only increases the tensile strength but also improves the impact strength of poly(butylene succinate)/poly(lactic acid)wood flour composite under high dynamic loading. Moreover, when Fusabond MB 100 D is added as a coupling agent to the poly(butylene succinate)/poly(lactic acid)wood flour composite results of X-ray photo spectroscopy, fracture surface morphology and dynamical mechanical property indicate the interaction between the poly(butylene succinate)/poly(lactic acid) blend with the wood flour.


2015 ◽  
Vol 30 (5) ◽  
pp. 583-598 ◽  
Author(s):  
Chana Prapruddivongs ◽  
Narongrit Sombatsompop

Poly(lactic acid) (PLA) and wood flour/PLA composites were prepared and blended with two antimicrobial agents, triclosan and silver-substituted zeolite (Zeomic), using a twin-screw extruder. The mechanical and thermal properties, antimicrobial activity, and biodegradation performance were investigated. The addition of wood and Zeomic was found to increase the Young’s modulus of the composites, whereas the tensile strength, elongation at break, and impact strength dropped. However, the mechanical properties of PLA and wood/PLA loaded with triclosan did not show any definite trends. Differential scanning calorimetry data indicated that the glass transition temperature value of neat PLA was 63°C, whereas those of wood/PLA composites were lower. When wood and Zeomic were incorporated, PLA exhibited double melting peaks. Triclosan (1.0 and 1.5 wt%) demonstrated antibacterial activity against Staphylococcus aureus, as determined by plate count agar technique, whereas Zeomic did not. Biodegradation tests of neat PLA and wood/PLA composites showed that after a 60-day incubation period, the biodegradation rate of wood/PLA was higher than that of PLA. PLA and wood/PLA-containing Zeomic were found to degrade more quickly, suggesting that wood and Zeomic acted as biodegradation promoters. On the other hand, triclosan could be considered a biodegradation retarder since no biodegradation was observed for any triclosan-loaded samples during the initial 20 days of incubation, while neat PLA and wood/PLA composites began to degrade within the first few days.


2013 ◽  
Vol 747 ◽  
pp. 148-152
Author(s):  
Chaichana Piyamawadee ◽  
Duangdao Aht-Ong

High molecular weight PLA was successfully synthesized by chain extension reaction of hydroxylated prepolymer using succinic anhydride as a chain extender. Hydroxylated prepolymer was prepared by direct condensation polymerization of L-lactic acid in the presence of 1,4-butanediol. Various molar ratios between hydroxylated prepolymer and succinic anhydride (i.e, 1:1, 1:2, 1:3) were investigated. The results showed that succinic anhydride can help increasing molecular weight of hydroxylated prepolymer approximately up to 47% as characterized by gel permeation chromatography (GPC) technique. Proton nuclear magnetic resonance (1H-NMR) was used to investigate structure of chain-extended PLA. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to examine thermal properties while the crystallinity was investigated by X-ray diffraction (XRD).


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 307 ◽  
Author(s):  
Jacek Andrzejewski ◽  
Katarzyna Skórczewska ◽  
Arkadiusz Kloziński

The study focuses on the development of polyoxymethylene (POM)/poly(lactic acid) (PLA) blends with increased impact and thermal resistance. The study was conducted in two phases; in the first part, a series of unmodified blends with PLA content of 25, 50, and 75 wt.% was prepared, while the second part focused on the modification of the PLA/POM (50/50) blends. An ethylene/butyl acrylate/glycidyl methacrylate terpolymer (E/BA/GMA) elastomer (EBA) was used to improve the impact strength of the prepared blends, while reactive blending was used to improve interfacial interactions. We used a multifunctional epoxy chain extender (CE) as the compatibilizer. Static tensile tests and notched Izod measurement were used to evaluate the mechanical performance of the prepared samples. The thermomechanical properties were investigated using dynamic mechanical thermal analysis (DMTA) analysis and heat deflection temperature (HDT)/Vicat softening temperature (VST) methods. The crystallinity was measured using differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXS) measurements, while the rheology was evaluated using a rotational rheometer. The paper also includes a structure analysis performed using the SEM method. The structural tests show partial miscibility of the POM/PLA systems, resulting in the perfect compatibility of both phases. The impact properties of the final blends modified by the EBA/CE system were found to be similar to pure POM resin, while the E modulus was visibly improved. Favorable changes were also noticeable in the case of the thermomechanical properties. The results of most of the conducted measurements and microscopic observations confirm the high efficiency of the reaction for PLA as well as for the modified POM/PLA mixtures.


2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Peng Zhao ◽  
Wanqiang Liu ◽  
Qingsheng Wu ◽  
Jie Ren

Series of biodegradable polyesters poly(butylene adipate) (PBA), poly(butylene succinate) (PBS), and poly(butylene adipate-co-butylene terephthalate) (PBAT) were synthesized successfully by melt polycondensation. The polyesters were characterized by Fourier transform infrared spectroscopy (FTIR),1H-NMR, differential scanning calorimetry (DSC), and gel permeation chromatography (GPC), respectively. The blends of poly(lactic acid) (PLA) and biodegradable polyester were prepared using a twin screw extruder. PBAT, PBS, or PBA can be homogenously dispersed in PLA matrix at a low content (5–20 wt%), yielding the blends with much higher elongation at break than homo-PLA. DSC analysis shows that the isothermal and nonisothermal crystallizabilities of PLA component are promoted in the presence of a small amount of PBAT.


2014 ◽  
Vol 34 (7) ◽  
pp. 665-672 ◽  
Author(s):  
Yottha Srithep ◽  
Wuttipong Rungseesantivanon ◽  
Bongkot Hararak ◽  
Krisda Suchiva

Abstract Currently, use of poly(lactic acid) (PLA) is limited for commercial applications because it has a low heat resistance. In this research, an increase of over 40°C heat distortion temperature (HDT) of PLA alloy was obtained by blending PLA with polycarbonate (PC) and a chain extender (CE). Molecular weight, thermal, mechanical and morphological properties of PLA and PC blend with different CE contents were investigated. Gel permeation chromatography (GPC) results showed that some PLA-PC copolymers were produced and the compatibility of the PLA phase and in the PC phase was improved via the chain extension reaction. In addition, the reaction induced by CE also affected the crystallization behaviors of PLA, as observed from differential scanning calorimetry (DSC) results and the enthalpy of melting of PLA decreased with increasing CE content. The combined effects of the CE increasing molecular weight, improving compatibility and limiting the crystallization behavior of PLA/PC alloy greatly improved the HDT.


2021 ◽  
pp. 002199832098856
Author(s):  
Marcela Piassi Bernardo ◽  
Bruna Cristina Rodrigues da Silva ◽  
Luiz Henrique Capparelli Mattoso

Injured bone tissues can be healed with scaffolds, which could be manufactured using the fused deposition modeling (FDM) strategy. Poly(lactic acid) (PLA) is one of the most biocompatible polymers suitable for FDM, while hydroxyapatite (HA) could improve the bioactivity of scaffold due to its chemical composition. Therefore, the combination of PLA/HA can create composite filaments adequate for FDM and with high osteoconductive and osteointegration potentials. In this work, we proposed a different approache to improve the potential bioactivity of 3D printed scaffolds for bone tissue engineering by increasing the HA loading (20-30%) in the PLA composite filaments. Two routes were investigated regarding the use of solvents in the filament production. To assess the suitability of the FDM-3D printing process, and the influence of the HA content on the polymer matrix, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were performed. The HA phase content of the composite filaments agreed with the initial composite proportions. The wettability of the 3D printed scaffolds was also increased. It was shown a greener route for obtaining composite filaments that generate scaffolds with properties similar to those obtained by the solvent casting, with high HA content and great potential to be used as a bone graft.


Sign in / Sign up

Export Citation Format

Share Document