The Influence of Amount of Succinic Anhydride in Chain Extension Reaction on Increasing Molecular Weight of Poly(lactic acid)

2013 ◽  
Vol 747 ◽  
pp. 148-152
Author(s):  
Chaichana Piyamawadee ◽  
Duangdao Aht-Ong

High molecular weight PLA was successfully synthesized by chain extension reaction of hydroxylated prepolymer using succinic anhydride as a chain extender. Hydroxylated prepolymer was prepared by direct condensation polymerization of L-lactic acid in the presence of 1,4-butanediol. Various molar ratios between hydroxylated prepolymer and succinic anhydride (i.e, 1:1, 1:2, 1:3) were investigated. The results showed that succinic anhydride can help increasing molecular weight of hydroxylated prepolymer approximately up to 47% as characterized by gel permeation chromatography (GPC) technique. Proton nuclear magnetic resonance (1H-NMR) was used to investigate structure of chain-extended PLA. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to examine thermal properties while the crystallinity was investigated by X-ray diffraction (XRD).

2014 ◽  
Vol 34 (7) ◽  
pp. 665-672 ◽  
Author(s):  
Yottha Srithep ◽  
Wuttipong Rungseesantivanon ◽  
Bongkot Hararak ◽  
Krisda Suchiva

Abstract Currently, use of poly(lactic acid) (PLA) is limited for commercial applications because it has a low heat resistance. In this research, an increase of over 40°C heat distortion temperature (HDT) of PLA alloy was obtained by blending PLA with polycarbonate (PC) and a chain extender (CE). Molecular weight, thermal, mechanical and morphological properties of PLA and PC blend with different CE contents were investigated. Gel permeation chromatography (GPC) results showed that some PLA-PC copolymers were produced and the compatibility of the PLA phase and in the PC phase was improved via the chain extension reaction. In addition, the reaction induced by CE also affected the crystallization behaviors of PLA, as observed from differential scanning calorimetry (DSC) results and the enthalpy of melting of PLA decreased with increasing CE content. The combined effects of the CE increasing molecular weight, improving compatibility and limiting the crystallization behavior of PLA/PC alloy greatly improved the HDT.


2018 ◽  
Vol 6 (2) ◽  
pp. 626
Author(s):  
Irwan Noezar ◽  
V.S. Praptowidodo ◽  
R. Nugraheni ◽  
M.H. Nasution

The objective of this research is to learn and to make the biodegradable polymer, Poly(lactic acid), from lactic acid by condensation polymerization without catalyst. Poly(lactic acid) that will be produced in this research should have the molecular weight between 3000-5000 grams/mole. The scopes of this research are the_purification of lactic acid, purity analysis, polymerization reaction, and polymer's characteristic analysis. The method of lactic acid purification is distillation in nitrogen atmosphere. Polymerization reaction which is used in this research is the condensation polymerization without catalyst. The polymer's characteristics that will be analyzed are molecular weight and  degradation time Molecular weight is analyzed by viscosimetry method and Gel Permeation Chromatography. Degradation time is analyzed by landfill method Based on this research, purification of D,L-lactic acid (91%-weight) reaches 98%-weight and for L-lactic acid (93%-weight) reaches 96%-berat. Molecular weight of D,L-lactic acid between 450-3600 grams/mole and L-lactic acid between 4200-8500 grams/mole.  The degradation time of polymer is 5 weeks.Keywords: Poly(lactic acid), polymer,  biodegradable AbstrakPenelitian ini bertujuan untuk mempelajari dan mensintesis biodegradable polymer, Poly(lactic acid) dari asam laktat melalui reaksi polimerisasi kondensasi tanpa katalis. Poly(lactic acid) yang dihasilkan dalam penelitian ini diharapkan memiliki berat molekul antara 3000-5000 gram/mol. Ruang lingkup penelitian meliputi pemurnian asam laktat, analisa kemurnian asam laktat, reaksi polimerisasi kondensasi dan karakterisasi polimer. Pemurnian asam laktat dilakukan melalui distilasi pada atmosfer nitrogen dan tekanan 1 atmosfer. Reaksi polimerisasi dilakukan melalui polimerisasi kondensasi tanpa katalis dengan variasi waktu reaksi pengadukan mekanik dan laju pemanasan. Karakteristik polimer yang dianalisis adalah berat molekul dan waktu degradasi. Berat molekul dianalisis dengan metode GPC (Gel Permeation Chromatography) dan viskosimetri. Degradasi polimer dilakukan secara landfill. Berdasarkan hasil percobaan, pemurnian asam laktat untuk monomer D,L-Lacticacid (91%-berat) mencapai 98%-berat sedangkan untuk monomer L-Lactic acid (93%-berat) mencapai 96%-berat. Berat molekul yang dihasilkan untuk monomer D,L-Lactic acid adalah 450 - 3600 gram/mol sedangkan untuk monomer L-Lactic acid adalah 4200- 8500 gram/mol. Waktu degradasi polimer secara landfill adalah 5 minggu.Kata kunci : Poly(lactic acid), polimer, biodegradable


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1822
Author(s):  
Evangelia Balla ◽  
Vasileios Daniilidis ◽  
Georgia Karlioti ◽  
Theocharis Kalamas ◽  
Myrika Stefanidou ◽  
...  

Environmental problems, such as global warming and plastic pollution have forced researchers to investigate alternatives for conventional plastics. Poly(lactic acid) (PLA), one of the well-known eco-friendly biodegradables and biobased polyesters, has been studied extensively and is considered to be a promising substitute to petroleum-based polymers. This review gives an inclusive overview of the current research of lactic acid and lactide dimer techniques along with the production of PLA from its monomers. Melt polycondensation as well as ring opening polymerization techniques are discussed, and the effect of various catalysts and polymerization conditions is thoroughly presented. Reaction mechanisms are also reviewed. However, due to the competitive decomposition reactions, in the most cases low or medium molecular weight (MW) of PLA, not exceeding 20,000–50,000 g/mol, are prepared. For this reason, additional procedures such as solid state polycondensation (SSP) and chain extension (CE) reaching MW ranging from 80,000 up to 250,000 g/mol are extensively investigated here. Lastly, numerous practical applications of PLA in various fields of industry, technical challenges and limitations of PLA use as well as its future perspectives are also reported in this review.


2013 ◽  
Vol 91 (6) ◽  
pp. 392-397 ◽  
Author(s):  
Genny E. Keefe ◽  
Jean-d'Amour K. Twibanire ◽  
T. Bruce Grindley ◽  
Michael P. Shaver

A family of polymer stars has been prepared from early generation dendritic cores with four, six, and eight arms. Four dendritic cores were prepared from the sequential reaction of a multifunctional alcohol with a protected anhydride, followed by deprotection to afford two or three new alcohol functionalities per reactive site. These cores were used as initiators for the tin-catalyzed ring-opening polymerization of l-lactide and rac-lactide to afford isotactic and atactic degradable stars, respectively. Two series of stars were prepared for each monomer, either maintaining total molecular weight or number of monomer units per arm. The polymers were characterized by NMR spectroscopy, light-scattering gel-permeation chromatography, differential scanning calorimetry, and thermogravimetric analysis. Our results support previous work that suggests that the length of the arms dictates thermal properties rather than the total molecular weight of the star. Little effect was noted between aromatic and aliphatic cores, presumably due to the flexibility of the rest of the core molecule. We have shown that early generation dendrimers can serve as excellent core structures for building core-first polymer stars via the ring-opening of cyclic esters.


2019 ◽  
Vol 3 (2) ◽  
pp. 52 ◽  
Author(s):  
Eduardo H. Backes ◽  
Laís de N. Pires ◽  
Lidiane C. Costa ◽  
Fabio R. Passador ◽  
Luiz A. Pessan

Poly (lactic acid) (PLA)/bioactive composites are emerging as new biomaterials since it is possible to combine stiffness, mechanical resistance, and bioactive character of the bioglasses with conformability and bioabsorption of the PLA. In this study, PLA/Biosilicate® composites were prepared using a melt-processing route. The processability and properties were evaluated aiming to produce composites with bioactive properties. Two different PLA (PLA 2003D and PLA 4043D) were tested with the addition of 1 wt. % of Biosilicate®. Both materials presented a huge reduction in melt viscosity after internal mixer processing. The degradation effects of the addition of Biosilicate® in the PLAs matrices were evaluated using zeta potential tests that showed a very high liberation of ions, which catalyzes PLA thermo-oxidative reactions. To understand the extension of degradation effects during the processing, the composites were characterized using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), gel permeation chromatography (GPC), and rheological tests. GPC results showed that PLA with the lowest residual acid content (RAC), PLA 2003D, presented higher thermal stability, higher molecular weight, and viscosity baseline compared to PLA 4043D. The composites showed a significant decrease in molecular weight for both PLA with the addition of Biosilicate®. TGA results showed that Biosilicate® might have reduced the activation energy to initiate thermodegradation reactions in PLAs and it occasioned a reduction in the Tonset by almost 40 °C. The DSC results showed that severe matrix degradation and the presence of bioglass did not significantly affect glass transition temperature (Tg), melting temperature (Tm) and crystallinity of PLAs, but it influenced cold crystallization peak (Tcc). In this way, the type of PLA used influences the processability of this material, which can make the production of filaments of this material for 3D printing unfeasible.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Sujal Bhattacharjee ◽  
Dilpreet S. Bajwa

Poly(lactic acid) (PLA) based composites are biodegradable; their disposal after single use may be needless and uneconomical. Prodigal disposal of these composites could also create an environmental concern and additional demand for biobased feedstock. Under these circumstances, recycling could be an effective solution, since it will widen the composite service life and prevent the excessive use of natural resources. This research investigates an in-depth impact of recycling on the mechanical and thermomechanical properties of oak wood flour based PLA composites. Two composite formulations (30 and 50 wt% filler), each with 3 wt% coupling agent (PLA-g-MA), were produced and reprocessed six times by extrusion followed by injection molding. Measurements of fiber length and molecular weight of polymer were, respectively, carried out by gel permeation chromatography (GPC). Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FTIR) tools were used to study morphological and molecular alterations. With consecutive recycling, PLA composites showed a gradual decrease in strength and stiffness properties and an increase in strain properties. The 50% and 30% filler concentration of fibers in the composite showed an abrupt decrease in strength properties after six and two reprocessing cycles, respectively.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1963 ◽  
Author(s):  
Marcin Borowicz ◽  
Joanna Paciorek-Sadowska ◽  
Marek Isbrandt ◽  
Łukasz Grzybowski ◽  
Bogusław Czupryński

The article concerns the use of glycerolysis reaction as an alternative method of processing post-production and post-consumer waste from poly(lactic acid) (PLA). Management of waste is a very important issue from an environmental protection and economic point of view. Extending the “life cycle” of PLA is extremely important because it allows to make the most of this material. It also limits economic losses resulting from its disposal in the biodegradation process at the same time. This paper presents a method of glycerolysis of poly(lactic acid) waste using various amounts of anhydrous glycerol (mass ratio from 0.3 to 0.5 parts by weight of glycerol per 1.0 part by weight of PLA). This process was also carried out for pure, unmodified PLA Ingeo® (from NatureWorks) to compare the obtained results. The six liquid oligomeric polyhydric alcohols were obtained as a result of the synthesis. Then, they were subjected to physicochemical tests such as determination of color, smell, density, viscosity, and pH. In addition, the obtained raw materials were subjected to analytical tests such as determination of the hydroxyl value, acid value, water content, and elemental composition. The average molecular weights and dispersity were also tested by gel permeation chromatography (GPC). The assumed chemical structure of the obtained compounds was confirmed by spectroscopic methods such as FTIR, 1H NMR, 13C NMR. Glycerolysis products were also subjected to differential scanning calorimetry (DSC) to determine thermal parameters. The obtained research results have allowed the precise characterization of newly obtained products and determination of their suitability, e.g., for the synthesis of polyurethane (PUR) materials.


2017 ◽  
Vol 37 (9) ◽  
pp. 897-909
Author(s):  
Li Zhang ◽  
Weijun Zhen ◽  
Yufang Zhou

Abstract Poly(lactic acid) (PLA) was synthesized using a green catalyst, nano-zinc oxide (ZnO). The optimum synthesis conditions of PLA were as follows: a stoichiometric amount of 0.5 wt% of nano-ZnO, polymerization time of 14 h, and polymerization temperature of 170°C. Gel permeation chromatography results showed that the weight-average molecular weight (Mw) of PLA was 13,072 g/mol with a polydispersity index (PDI) of 1.7. Furthermore, PLA-α-cyclodextrin inclusion compounds (PLA-CD-ICs) were prepared by ultrasonic co-precipitation techniques. X-ray diffraction analysis and Fourier transform infrared spectroscopy demonstrated the change in lattice of α-CD from a cage configuration to a tunnel structure and the existence of some physical interactions between α-CD and PLA in the PLA-CD-ICs. To enhance the crystallization properties of PLA, PLA/PLA-CD-IC composites were blended with different contents of PLA-CD-ICs as nucleating agents. The crystallization behavior and comprehensive performance were investigated by differential scanning calorimetry, polarized optical microscopy, tensile testing, dynamic mechanical analysis, and scanning electron microscopy. Compared to PLA, the crystallinities of PLA/PLA-CD-IC composites were increased by 24.0%, 26.3%, 27.3%, and 31.8%. The results of all the analyses proved that PLA-CD-ICs were useful as green organic nucleators and improved the comprehensive performance of PLA materials.


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3946
Author(s):  
Ye Fu ◽  
Gang Wu ◽  
Xinchao Bian ◽  
Jianbing Zeng ◽  
Yunxuan Weng

Poly(butylene adipate-co-terephthalate) (PBAT) and poly(lactic acid) (PLA) are well-known biodegadable polyesters due to their outstanding performance. The biodegradation behavior of PLA/PBAT blends in freshwater with sediment is investigated in this study by analyzing the appearance, chemical structure and aggregation structure of their degraded residues via SEM, TG, DSC, gel permeation chromatography (GPC) and XPS. The effect of aggregation structure, hydrophilia and biodegradation mechanisms of PBAT and PLA on the biodegradability of PLA/PBAT blends is illuminated in this work. After biodegradation, the butylene terephthalate unit in the molecular structure of the components and the molecular weight of PLA/PBAT blends decreased, while the content of C-O bond in the composites increased, indicating that the samples indeed degraded. After 24 months of degradation, the increase in the relative peak area proportion of C-O to C=O in PLA/PBAT-25, PLA/PBAT-50 and PLA/PBAT-75 was 62%, 46% and 68%, respectively. The biodegradation rates of PBAT and PLA in the PLA/PBAT blend were lower than those for the respective single polymers.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Chenguang Liu ◽  
Yuliang Jia ◽  
Aihua He

High molecular weight poly (lactic acid) (PLA) was obtained by chain extending with hexamethylene diisocyanate (HDI). The influences of the amount of chain extender, reaction time, and molecular weight changes of prepolymers on the poly(lactic acid) were investigated. PLA prepolymer with a viscosity, average molecular weight (Mη) of 2 × 104 g/mol was synthesized froml-lactide using stannous octoate as the catalyst. After 20 min of chain extension at 175°C, the resulting polymer hadMwof 20.3 × 104 g/mol andMnof 10.5 × 104 g/mol. Both FT-IR and1H-NMR verified that the structure of PLA did not change either before chain extending or after. The optically active characterized that the chain extending-product was left handed. DSC and XRD results showed that both theTgand the crystallinity of PLA were lowered by chain-extension reaction. The crystalline transformation happened in PLA after chain extending, crystallineα′form toαform.


Sign in / Sign up

Export Citation Format

Share Document