scholarly journals Deviation from Regular Shape in the Early Stages of Formation of Strain-Driven 3D InGaAs/GaAs Micro/Nanotubes

2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Paola Frigeri ◽  
Luca Seravalli ◽  
Marco Calicchio ◽  
Enos Gombia ◽  
Giovanna Trevisi

Single-crystalline InGaAs/GaAs semiconductor micro/nanotubes have been obtained by the strain-driven self-rolling mechanism. This approach combines the advantages of bottom-up (epitaxial growth) and top-down (postgrowth processing) techniques, offering an exceptional opportunity to realize complex three-dimensional nanoarchitectures by using conventional photolithography and wet-etching processes. The method employed to obtain micro/nanotubes with selected orientation and length is described in detail. By means of high-resolution scanning electron microscopy characterization, we show a clear shape difference between single-wall and multiwalls tubes and we discuss it on the basis of strain release, taking into account also possible shape deformations induced during micro/nanotubes drying. We analyse the In-segregation profile in the nominal In0.20Ga0.80As/GaAs bilayer and we show its effect on the actual diameter of the tubes, concluding that a more accurate description of the structure should consider an In0.20Ga0.80As/In0.10Ga0.90As/GaAs trilayer. This work will be useful to set up reliable methodologies for the realization of strain-driven micro/nanotubes with controlled properties, necessary for their implementation in a large number of application fields.

Author(s):  
B.V.V. Prasad ◽  
E. Marietta ◽  
J.W. Burns ◽  
M.K. Estes ◽  
W. Chiu

Rotaviruses are spherical, double-shelled particles. They have been identified as a major cause of infantile gastroenteritis worldwide. In our earlier studies we determined the three-dimensional structures of double-and single-shelled simian rotavirus embedded in vitreous ice using electron cryomicroscopy and image processing techniques to a resolution of 40Å. A distinctive feature of the rotavirus structure is the presence of 132 large channels spanning across both the shells at all 5- and 6-coordinated positions of a T=13ℓ icosahedral lattice. The outer shell has 60 spikes emanating from its relatively smooth surface. The inner shell, in contrast, exhibits a bristly surface made of 260 morphological units at all local and strict 3-fold axes (Fig.l).The outer shell of rotavirus is made up of two proteins, VP4 and VP7. VP7, a glycoprotein and a neutralization antigen, is the major component. VP4 has been implicated in several important functions such as cell penetration, hemagglutination, neutralization and virulence. From our earlier studies we had proposed that the spikes correspond to VP4 and the rest of the surface is composed of VP7. Our recent structural studies, using the same techniques, with monoclonal antibodies specific to VP4 have established that surface spikes are made up of VP4.


2021 ◽  
Vol 104 (1) ◽  
pp. 003685042098705
Author(s):  
Xinran Wang ◽  
Yangli Zhu ◽  
Wen Li ◽  
Dongxu Hu ◽  
Xuehui Zhang ◽  
...  

This paper focuses on the effects of the off-design operation of CAES on the dynamic characteristics of the triple-gear-rotor system. A finite element model of the system is set up with unbalanced excitations, torque load excitations, and backlash which lead to variations of tooth contact status. An experiment is carried out to verify the accuracy of the mathematical model. The results show that when the system is subjected to large-scale torque load lifting at a high rotating speed, it has two stages of relatively strong periodicity when the torque load is light, and of chaotic when the torque load is heavy, with the transition between the two states being relatively quick and violent. The analysis of the three-dimensional acceleration spectrum and the meshing force shows that the variation in the meshing state and the fluctuation of the meshing force is the basic reasons for the variation in the system response with the torque load. In addition, the three rotors in the triple-gear-rotor system studied show a strong similarity in the meshing states and meshing force fluctuations, which result in the similarity in the dynamic responses of the three rotors.


2012 ◽  
Vol 497 ◽  
pp. 89-93
Author(s):  
Liang Liang Yuan ◽  
Ke Hua Zhang ◽  
Li Min

In order to process heterotype hole of workpiece precisely, an open abrasive flow polish machine is designed, and the optimization design of machine frame is done for low cost. Firstly, basing on the parameters designed with traditional ways, three-dimensional force model is set up with the soft of SolidWorks. Secondly, the statics and modal analysis for machine body have been done in Finite element methods (FEM), and then the optimization analysis of machine frame has been done. At last, the model of rebuild machine frame has been built. Result shows that the deformation angle value of machine frame increased from 0.72′ to 1.001′, the natural frequency of the machine decreased from 75.549 Hz to 62.262 Hz, the weight of machine decreased by 74.178 Kg after optimization. It meets the strength, stiffness and angel stiffness requirement of machine, reduces the weight and cost of machine.


2020 ◽  
Vol 174 ◽  
pp. 01048
Author(s):  
Elena Kassikhina ◽  
Vladimir Pershin ◽  
Nina Rusakova

The existing structures of the steel sinking headgear and permanent headframe do not meet the requirements of resource saving (metal consumption and manpower input at installation), and the present methods of the headframe designing do not fully reflect recent possibilities of applying of the advanced information technologies. Technical level of the modern software makes it possible for designers to set up multiple numerical experiments to create a computer simulation that allows solving the problem without field and laboratory experiments, and therefore without special costs. In this regard, a mathematical simulation has been developed and based on it, software to select cross-sections of multi- purpose steel headframe elements and to calculate proper weight of its metal structures depending on the characteristics and hoisting equipment. A headframe drawing is displayed, as the results of the software work, including list of elements, obtained optimal hoisting equipment in accordance with the initial data. The software allows speeding up graphic work and reducing manpower input on calculations and paper work. The software allows developing a three-dimensional image of the structure and its functional blocks, based on the obtained initial parameters, as well as developing control software for units with numerical control (NC) in order to manufacture multi-purpose headframes.


2007 ◽  
Vol 329 ◽  
pp. 761-766 ◽  
Author(s):  
Y. Zhang ◽  
Masato Yoshioka ◽  
Shin-Ichiro Hira

At present, a commercially available magnetic barrel machine equipped with permanent magnets has some faults arising from constructional reason. That is, grinding or finishing ability is different from place to place in the machining region, resulting in the limitation on the region we can use in the container of workpieces. Therefore, in this research, authors made the new magnetic barrel machine equipped with three dimensional (3D) magnet arrangement to overcome these faults. The grinding ability of the new 3D magnetic barrel machine converted was experimentally examined, and compared with that of the traditional magnetic barrel machine. As a result, it was shown that we can use much broader region in the new 3D machine. It was also shown that the grinding ability became higher. The distribution of barrel media in action was recorded by means of a high speed video camera. It was clarified that the media rose up higher and were distributed more uniformly in the container by the effect of the magnet block newly set up. It was supposed that this must be the reason for the above-mentioned improvement of grinding ability.


2002 ◽  
Vol 30 (2) ◽  
pp. 78-82 ◽  
Author(s):  
M. Beier ◽  
M. Baum ◽  
H. Rebscher ◽  
R. Mauritz ◽  
A. Wixmerten ◽  
...  

Concepts and results are described for the use of a single, but extremely flexible, probing tool to address a wide variety of genomic questions. This is achieved by transforming genomic questions into a software file that is used as the design scheme for potentially any genomic assay in a microarray format. Microarray fabrication takes place in three-dimensional microchannel reaction carriers by in situ synthesis based on spatial light modulation. This set-up allows for maximum flexibility in design and realization of genomic assays. Flexibility is achieved at the molecular, genomic and assay levels. We have applied this technology to expression profiling and genotyping experiments.


2021 ◽  
Vol 8 (1) ◽  
pp. 205395172110135
Author(s):  
Florian Jaton

This theoretical paper considers the morality of machine learning algorithms and systems in the light of the biases that ground their correctness. It begins by presenting biases not as a priori negative entities but as contingent external referents—often gathered in benchmarked repositories called ground-truth datasets—that define what needs to be learned and allow for performance measures. I then argue that ground-truth datasets and their concomitant practices—that fundamentally involve establishing biases to enable learning procedures—can be described by their respective morality, here defined as the more or less accounted experience of hesitation when faced with what pragmatist philosopher William James called “genuine options”—that is, choices to be made in the heat of the moment that engage different possible futures. I then stress three constitutive dimensions of this pragmatist morality, as far as ground-truthing practices are concerned: (I) the definition of the problem to be solved (problematization), (II) the identification of the data to be collected and set up (databasing), and (III) the qualification of the targets to be learned (labeling). I finally suggest that this three-dimensional conceptual space can be used to map machine learning algorithmic projects in terms of the morality of their respective and constitutive ground-truthing practices. Such techno-moral graphs may, in turn, serve as equipment for greater governance of machine learning algorithms and systems.


2021 ◽  
Author(s):  
Ramtin Sabeti ◽  
Mohammad Heidarzadeh

<p>Landslide-generated waves have been major threats to coastal areas and have led to destruction and casualties. Their importance is undisputed, most recently demonstrated by the 2018 Anak Krakatau tsunami, causing several hundred fatalities. The accurate prediction of the maximum initial amplitude of landslide waves (<em>η<sub>max</sub></em>) around the source region is a vital hazard indicator for coastal impact assessment. Laboratory experiments, analytical solutions and numerical modelling are three major methods to investigate the (<em>η<sub>max</sub></em>). However, the numerical modelling approach provides a more flexible and cost- and time-efficient tool. This research presents a numerical simulation of tsunamis due to rigid landslides with consideration of submerged conditions. In particular, this simulation focuses on studying the effect of landslide parameters on <em>η<sub>max</sub>.</em> Results of simulations are compared with our conducted physical experiments at the Brunel University London (UK) to validate the numerical model.</p><p>We employ the fully three-dimensional computational fluid dynamics package, FLOW-3D Hydro for modelling the landslide-generated waves. This software benefit from the Volume of Fluid Method (VOF) as the numerical technique for tracking and locating the free surface. The geometry of the simulation is set up according to the wave tank of physical experiments (i.e. 0.26 m wide, 0.50 m deep and 4.0 m). In order to calibrate the simulation model based on the laboratory measurements, the friction coefficient between solid block and incline is changed to 0.41; likewise, the terminal velocity of the landslide is set to 0.87 m/s. Good agreement between the numerical solutions and the experimental results is found. Sensitivity analyses of landslide parameters (e.g. slide volume, water depth, etc.) on <em>η<sub>max </sub></em>are performed. Dimensionless parameters are employed to study the sensitivity of the initial landslide waves to various landslide parameters.</p>


Sign in / Sign up

Export Citation Format

Share Document