scholarly journals Systematic Theoretical Analysis of Dual-Parameters RF Readout by a Novel LC-Type Passive Sensor

2017 ◽  
Vol 2017 ◽  
pp. 1-11
Author(s):  
Qiulin Tan ◽  
Yanjie Guo ◽  
Guozhu Wu ◽  
Tao Luo ◽  
Tanyong Wei ◽  
...  

This paper systematically studied the simultaneous measurement of two parameters by a LC-type passive sensor from the theoretical perspective. Based on the lumped circuit model of the typical LC-type passive dual-parameter sensor system, the influencing factors of the signal strength of the sensor as well as the influencing factors of signal crosstalk were both analyzed. It is found that the influencing factors of the RF readout signal strength of the sensor are mainly quality factors (Q factors) of the LC tanks, coupling coefficients, and the resonant frequency interval of the two LC tanks. And the influencing factors of the signal crosstalk are mainly coupling coefficient between the sensor inductance coils and the resonant frequency interval of the two LC tanks. The specific influence behavior of corresponding influencing factors on the signal strength and crosstalk is illustrated by a series of curves from numerical results simulated by using MATLAB software. Additionally, a decoupling scheme for solving the crosstalk problem algorithmically was proposed and a corresponding function was derived out. Overall, the theoretical analysis conducted in this work can provide design guidelines for making the dual-parameter LC-type passive sensor useful in practical applications.

Author(s):  
John J. Lowe

This chapter briefly considers the evidence for transitive nouns and adjectives in early Indo-Aryan in both a typological and a theoretical perspective. The fact that most transitive nouns and adjectives in early Indo-Aryan fall under the traditional heading of ‘agent nouns’ (subject-oriented formations) is typologically notable, since while action nouns with verbal government are well-known, the possibility of relatively verbal agent nouns has not always been acknowledged. The theoretical analysis is framed within Lexical-Functional Grammar, and makes use of the concept of ‘mixed’ categories to effect a clear formalization of transitive nouns and adjectives which captures their transitivity while allowing them to remain fundamentally nouns and adjectives in categorial terms.


2018 ◽  
Vol 7 (3) ◽  
pp. 38 ◽  
Author(s):  
Xiao-Li Hu ◽  
Pin-Han Ho ◽  
Limei Peng

We study theoretical performance of Maximum Likelihood (ML) estimation for transmit power of a primary node in a wireless network with cooperative receiver nodes. The condition that the consistence of an ML estimation via cooperative sensing can be guaranteed is firstly defined. Theoretical analysis is conducted on the feasibility of the consistence condition regarding an ML function generated by independent yet not identically distributed random variables. Numerical experiments justify our theoretical discoveries.


Fuel ◽  
2020 ◽  
Vol 269 ◽  
pp. 117467 ◽  
Author(s):  
Xiangliang Tian ◽  
Chang Liu ◽  
Maohua Zhong ◽  
Congling Shi

Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1192 ◽  
Author(s):  
Lin Chen ◽  
Jianfeng Hong ◽  
Mingjie Guan ◽  
Wei Wu ◽  
Wenxiang Chen

In a traditional inductive coupling power transfer (ICPT) system, the converter and the resonant network are strongly coupled. Since the coupling coefficient and the parameters of the resonant network usually vary, the resonant network easily detunes, and the system efficiency, power source capacity, power control, and soft switching conditions of the ICPT system are considerably affected. This paper presents an ICPT system based on a power converter decoupled from the resonant network. In the proposed system, the primary inductor is disconnected from the resonant network during the energy injection stage. After storing a certain amount of energy, the primary inductor is reconnects with the resonant network. Through this method, the converter can be decoupled from the resonant network, and the resonant network can be tuned under various coupling coefficients. Theoretical analysis was explored first. Simulations and experimental work are carried out to verify the theoretical analysis. The results show that the proposed ICPT system has the virtues of low power source capacity, independent power control, and soft switching operation under different coupling coefficients.


Author(s):  
C. Miyasaka ◽  
B. R. Tittmann ◽  
T. Adachi ◽  
A. Yamaji

When the Ultrasonic-Atomic Force Microscope (U-AFM) is used to form an image of a surface of a specimen having discontinuities, contrast of the specimen in the image is usually stronger than that of an image formed by a conventional Atomic Force Microscope (AFM). In this article, the mechanism of the contrast of the image obtained by the U-AFM was explained by theoretical analysis. A ceramic and metal jointed bar (Steel/Cu/Si3N4) was selected as a specimen for this study. The specimen was located on the surface of a disc transducer generating ultrasonic waves up to 500 KHz, and was vibrated, wherein its first resonant frequency was 133.43 kHz. Both stress and displacement of the specimen were analyzed by classical beam theory and the two-dimensional elasto-dynamic theory. Experimental U-AFM imaging analyses were also carried out to compare the results.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Liang Xue ◽  
Yueyue Zhu ◽  
Chuankai Yang ◽  
Sisil Kumarawadu

Abstract Interferometry-based online partial discharge (PD) monitor presented in this paper can detect the occurrence of PD sensitively, evaluate the peak value of the discharge inception voltage with random waveform and the damage extent relatively cost effectively. The interferograms affected by the PD are collected online. By extracting the phase information of the interference fringes quantitatively, the peak value of the discharge inception voltage with random waveform can be retrieved real-time. Merits of the proposed method as an online quantitative PD monitor are validated via theoretical analysis as well as experimentations by the use of an artificially localized PD source. Furthermore, the proposed method can capture the light signal emitted by the discharge. Quite in contrast to many commonly used sensor-based methods, our approach avoids the need of amplifying the light signal strength making its practical implantation much convenient. The proposed method promises strong potential for field application.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3735
Author(s):  
Gašper Habjan ◽  
Martin Petrun

In this paper, the impact of the winding arrangement on the efficiency of the resistance spot welding (RSW) transformer is presented. First, the design and operation of the transformer inside a high power RSW system are analyzed. Based on the presented analysis, the generation of imbalanced excitation of the magnetic core is presented, which leads to unfavorable leakage magnetic fluxes inside the transformer. Such fluxes are linked to the dynamic power loss components that significantly decrease the efficiency of the transformer. Based on the presented analysis, design guidelines to reduce the unwanted leakage fluxes are pointed out. The presented theoretical analysis is confirmed by measurements using a laboratory experimental system. The presented experimental results confirm that the proposed improved winding arrangement increased the efficiency of the transformer in average for 6.27%.


Sign in / Sign up

Export Citation Format

Share Document