scholarly journals Energy Efficient Hierarchical Clustering Approaches in Wireless Sensor Networks: A Survey

2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Bilal Jan ◽  
Haleem Farman ◽  
Huma Javed ◽  
Bartolomeo Montrucchio ◽  
Murad Khan ◽  
...  

Wireless sensor networks (WSN) are one of the significant technologies due to their diverse applications such as health care monitoring, smart phones, military, disaster management, and other surveillance systems. Sensor nodes are usually deployed in large number that work independently in unattended harsh environments. Due to constraint resources, typically the scarce battery power, these wireless nodes are grouped into clusters for energy efficient communication. In clustering hierarchical schemes have achieved great interest for minimizing energy consumption. Hierarchical schemes are generally categorized as cluster-based and grid-based approaches. In cluster-based approaches, nodes are grouped into clusters, where a resourceful sensor node is nominated as a cluster head (CH) while in grid-based approach the network is divided into confined virtual grids usually performed by the base station. This paper highlights and discusses the design challenges for cluster-based schemes, the important cluster formation parameters, and classification of hierarchical clustering protocols. Moreover, existing cluster-based and grid-based techniques are evaluated by considering certain parameters to help users in selecting appropriate technique. Furthermore, a detailed summary of these protocols is presented with their advantages, disadvantages, and applicability in particular cases.

Wireless Sensor Networks (WSN) consists of a large amount of nodes connected in a self-directed manner. The most important problems in WSN are Energy, Routing, Security, etc., price of the sensor nodes and renovation of these networks is reasonable. The sensor node tools included a radio transceiver with an antenna and an energy source, usually a battery. WSN compute the environmental conditions such as temperature, sound, pollution levels, etc., WSN built the network with the help of nodes. A sensor community consists of many detection stations known as sensor nodes, every of which is small, light-weight and portable. Nodes are linked separately. Each node is linked into the sensors. In recent years WSN has grow to be an essential function in real world. The data’s are sent from end to end multiple nodes and gateways, the data’s are connected to other networks such as wireless Ethernet. MGEAR is the existing mechanism. It works with the routing and energy consumption. The principal problem of this work is choosing cluster head, and the selection is based on base station, so the manner is consumes energy. In this paper, develop the novel based hybrid protocol Low Energy Aware Gateway (LEAG). We used Zigbee techniques to reduce energy consumption and routing. Gateway is used to minimize the energy consumption and data is send to the base station. Nodes are used to transmit the data into the cluster head, it transmit the data into gateway and gateway compress and aggregate the data then sent to the base station. Simulation result shows our proposed mechanism consumes less energy, increased throughput, packet delivery ration and secure routing when compared to existing mechanism (MGEAR).


Author(s):  
C. R. Bharathi ◽  
Alapati Naresh ◽  
Arepalli Peda Gopi ◽  
Lakshman Narayana Vejendla

In wireless sensor networks (WSN), the majority of the inquiries are issued at the base station. WSN applications frequently require collaboration among countless sensor nodes in a network. One precedent is to persistently screen a region and report occasions. A sensor node in a WSN is initially allocated with an energy level, and based on the tasks of that sensor node, energy will be reduced. In this chapter, two proposed methods for secure network cluster formation and authentication are discussed. When a network is established then all the nodes in it must register with cluster head and then authentication is performed. The selection of cluster head is done using a novel selection algorithm and for authenticating the nodes. Also, a novel algorithm for authentication is used in this chapter. The validation and authorization of nodes are carried over by managing the keys in WSN. The results have been analyzed using NS2 simulator with an aid of list of relevant parameters.


Author(s):  
Saloni Dhiman ◽  
Deepti Kakkar ◽  
Gurjot Kaur

Wireless sensor networks (WSNs) consist of several sensor nodes (SNs) that are powered by battery, so their lifetime is limited, which ultimately affects the lifespan and hence performance of the overall networks. Till now many techniques have been developed to solve this problem of WSN. Clustering is among the effective technique used for increasing the network lifespan. In this chapter, analysis of multi-hop routing protocol based on grid clustering with different selection criteria is presented. For analysis, the network is divided into equal-sized grids where each grid corresponds to a cluster and is assigned with a grid head (GH) responsible for collecting data from each SN belonging to respective grid and transferring it to the base station (BS) using multi-hop routing. The performance of the network has been analyzed for different position of BS, different number of grids, and different number of SNs.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Mohammad Baniata ◽  
Jiman Hong

The recent advances in sensing and communication technologies such as wireless sensor networks (WSN) have enabled low-priced distributed monitoring systems that are the foundation of smart cities. These advances are also helping to monitor smart cities and making our living environments workable. However, sensor nodes are constrained in energy supply if they have no constant power supply. Moreover, communication links can be easily failed because of unequal node energy depletion. The energy constraints and link failures affect the performance and quality of the sensor network. Therefore, designing a routing protocol that minimizes energy consumption and maximizes the network lifetime should be considered in the design of the routing protocol for WSN. In this paper, we propose an Energy-Efficient Unequal Chain Length Clustering (EEUCLC) protocol which has a suboptimal multihop routing algorithm to reduce the burden on the cluster head and a probability-based cluster head selection algorithm to prolong the network lifetime. Simulation results show that the EEUCLC mechanism enhanced the energy balance and prolonged the network lifetime compared to other related protocols.


2020 ◽  
Vol 10 (21) ◽  
pp. 7886
Author(s):  
Atefeh Rahiminasab ◽  
Peyman Tirandazi ◽  
M. J. Ebadi ◽  
Ali Ahmadian ◽  
Mehdi Salimi

Wireless sensor networks (WSNs) include several sensor nodes that have limited capabilities. The most critical restriction in WSNs is energy resources. Moreover, since each sensor node’s energy resources cannot be recharged or replaced, it is inevitable to propose various methods for managing the energy resources. Furthermore, this procedure increases the network lifetime. In wireless sensor networks, the cluster head has a significant impact on system global scalability, energy efficiency, and lifetime. Furthermore, the cluster head is most important in combining, aggregating, and transferring data that are received from other cluster nodes. One of the substantial challenges in a cluster-based network is to choose a suitable cluster head. In this paper, to select an appropriate cluster head, we first model this problem by using multi-factor decision-making according to the four factors, including energy, mobility, distance to centre, and the length of data queues. Then, we use the Cluster Splitting Process (CSP) algorithm and the Analytical Hierarchy Process (AHP) method in order to provide a new method to solve this problem. These four factors are examined in our proposed approach, and our method is compared with the Base station Controlled Dynamic Clustering Protocol (BCDCP) algorithm. The simulation results show the proposed method in improving the network lifetime has better performance than the base station controlled dynamic clustering protocol algorithm. In our proposed method, the energy reduction is almost 5% more than the BCDCP method, and the packet loss rate in our proposed method is almost 25% lower than in the BCDCP method.


21st century is considered as the era of communication, and Wireless Sensor Networks (WSN) have assumed an extremely essential job in the correspondence period. A wireless sensor network is defined as a homogeneous or heterogeneous system contains a large number of sensors, namely called nodes used to monitor different environments in cooperatives. WSN is composed of sensor nodes (S.N.), base stations (B.S.), and cluster head (C.H.). The popularity of wireless sensor networks has been increased day by day exponentially because of its wide scope of utilizations. The applications of wireless sensor networks are air traffic control, healthcare systems, home services, military services, industrial & building automation, network communications, VAN, etc. Thus the wide range of applications attracts attackers. To secure from different types of attacks, mainly intruder, intrusion detection based on dynamic state context and hierarchical trust in WSNs (IDSHT) is proposed. The trust evaluation is carried out in hierarchical way. The trust of sensor nodes is evaluated by cluster head (C.H.), whereas the trust of the cluster head is evaluated by a neighbor cluster head or base station. Hence the content trust, honest trust, and interactive trust are put forward by combining direct evaluation and feedback based evaluation in the fixed hop range. In this way, the complexity of trust management is carried in a hierarchical manner, and trust evaluation overhead is minimized.


Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 403 ◽  
Author(s):  
Goran Popovic ◽  
Goran Djukanovic ◽  
Dimitris Kanellopoulos

Clustering achieves energy efficiency and scalable performance in wireless sensor networks (WSNs). A cluster is formed of several sensor nodes, one of them selected as the cluster head (CH). A CH collects information from the cluster members and sends aggregated data to the base station or another CH. In such a hierarchical WSN, some nodes are possibly moveable or nomadic (relocated periodically), while others are static. The mobility of sensor nodes can improve network performance and prolong network lifetime. This paper presents the idea of mobile, solar-powered CHs that relocate themselves inside clusters in such a way that the total energy consumption in the network is reduced and the network lifetime is extended. The positioning of CHs is made in each round based on a selfish herd hypothesis, where the leader retreats to the center of gravity. Based on this idea, the CH-active algorithm is proposed in this study. Simulation results show that this algorithm has benefits in terms of network lifetime and in the prolongation of the duration of network stability period.


2020 ◽  
Vol 2020 ◽  
pp. 1-19 ◽  
Author(s):  
Kashif Naseer Qureshi ◽  
Muhammad Umair Bashir ◽  
Jaime Lloret ◽  
Antonio Leon

Wireless sensor networks (WSNs) are becoming one of the demanding platforms, where sensor nodes are sensing and monitoring the physical or environmental conditions and transmit the data to the base station via multihop routing. Agriculture sector also adopted these networks to promote innovations for environmental friendly farming methods, lower the management cost, and achieve scientific cultivation. Due to limited capabilities, the sensor nodes have suffered with energy issues and complex routing processes and lead to data transmission failure and delay in the sensor-based agriculture fields. Due to these limitations, the sensor nodes near the base station are always relaying on it and cause extra burden on base station or going into useless state. To address these issues, this study proposes a Gateway Clustering Energy-Efficient Centroid- (GCEEC-) based routing protocol where cluster head is selected from the centroid position and gateway nodes are selected from each cluster. Gateway node reduces the data load from cluster head nodes and forwards the data towards the base station. Simulation has performed to evaluate the proposed protocol with state-of-the-art protocols. The experimental results indicated the better performance of proposed protocol and provide more feasible WSN-based monitoring for temperature, humidity, and illumination in agriculture sector.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Aaqil Somauroo ◽  
Vandana Bassoo

Due to its boundless potential applications, Wireless Sensor Networks have been subject to much research in the last two decades. WSNs are often deployed in remote environments making replacement of batteries not feasible. Low energy consumption being of prime requisite led to the development of energy-efficient routing protocols. The proposed routing algorithms seek to prolong the lifetime of sensor nodes in the relatively unexplored area of 3D WSNs. The schemes use chain-based routing technique PEGASIS as basis and employ genetic algorithm to build the chain instead of the greedy algorithm. Proposed schemes will incorporate an energy and distance aware CH selection technique to improve load balancing. Clustering of the network is also implemented to reduce number of nodes in a chain and hence reduce delay. Simulation of our proposed protocols is carried out for homogeneous networks considering separately cases for a static base-station inside and outside the network. Results indicate considerable improvement in lifetime over PEGASIS of 817% and 420% for base station inside and outside the network respectively. Residual energy and delay performance are also considered.


Author(s):  
Gaurav Kumar Nigam ◽  
Chetna Dabas

Background & Objective: Wireless sensor networks are made up of huge amount of less powered small sensor nodes that can audit the surroundings, collect meaningful data, and send it base station. Various energy management plans that pursue to lengthen the endurance of overall network has been proposed over the years, but energy conservation remains the major challenge as the sensor nodes have finite battery and low computational capabilities. Cluster based routing is the most fitting system to help for burden adjusting, adaptation to internal failure, and solid correspondence to draw out execution parameters of wireless sensor network. Low energy adaptive clustering hierarchy is an efficient clustering based hierarchical protocol that is used to enhance the lifetime of sensor nodes in wireless sensor network. It has some basic flaws that need to be overwhelmed in order to reduce the energy utilization and inflating the nodes lifetime. Methods : In this paper, an effective auxiliary cluster head selection is used to propose a new enhanced GC-LEACH algorithm in order to minimize the energy utilization and prolonged the lifespan of wireless sensor network. Results & Conclusion: Simulation is performed in NS-2 and the outcomes show that the GC-LEACH outperforms conventional LEACH and its existing versions in the context of frequent cluster head rotation in various rounds, number of data packets collected at base station, as well as reduces the energy consumption 14% - 19% and prolongs the system lifetime 8% - 15%.


Sign in / Sign up

Export Citation Format

Share Document