scholarly journals The Influences of the Model Configuration on the Simulation of Stratospheric Northern-Hemisphere Polar Vortex in the CMIP5 Models

2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Zelin Cai ◽  
Ke Wei ◽  
Luyang Xu ◽  
Xiaoqing Lan ◽  
Wen Chen ◽  
...  

As a basic part of the atmosphere, the stratosphere plays an important role in the tropospheric climate and weather systems, especially during the winter, when the stratosphere and troposphere have their strongest interactions. This study assesses the abilities of the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5) and CMIP3 models to simulate the boreal winter stratospheric polar vortex. Analysis indicates that the models with well-resolved stratospheres, that is, with a high model top (HTOP) covering the whole stratosphere, a high vertical resolution (HVer) of the stratosphere, and nonorographic gravity wave drag (NOG), rank higher in both the temporal scoring system and the spatial scoring system. The extreme cold polar vortex bias, which was found in the CMIP3 models, vanishes in the CMIP5 models with HTOP, HVer, and NOG but persists in the other CMIP5 models. A dynamical analysis shows that the heat flux propagating into the stratosphere is stronger in models with HTOP, HVer, and NOG, but these propagations are still weaker than those in the ERA40 reanalysis, indicating the lack of variability in the current CMIP5 models.

2021 ◽  
Author(s):  
Petr Šácha ◽  
Aleš Kuchař ◽  
Christoph Jacobi ◽  
Petr Pišoft ◽  
Roland Eichinger ◽  
...  

<div class="page" title="Page 1"> <div class="layoutArea"> <div class="column"> <p>In the extratropical atmosphere, Rossby waves (RWs) and internal gravity waves (GWs) propagating from the troposphere mediate a coupling with the middle atmosphere by influencing the dynamics herein. In current generation chemistry-climate models (CCMs), GWs are usually smaller than the model resolution and the majority of their spectrum therefore must be parameterized. From observations, we know that GWs are intermittent and asymmetrically distributed around the globe, which holds to some extent also for the parameterized GW drag (GWD) (in particular for orographic GWD (oGWD)). The GW parameterizations in CCMs are usually tuned to mitigate biases in the zonal mean climatology of particular quantities, but the complex interaction of parameterized GWs with the large- scale circulation and resolved waves in the models remains to date poorly understood.</p> <p>This presentation will combine observational evidence, idealized modeling and dynamical analysis of a CCM output to study both the short-term and long-term model response to the oGWD. Our results demonstrate that the oGW-resolved dynamics interaction is a complex two-way process, with the most prominent oGWD impact being the alteration of propagation of planetary-scale Rossby waves on a time-scale of a few days. The conclusions give a novel perspective on the importance of oGWD for the stratospheric polar vortex and atmospheric transport studies outlining potential foci of future research.</p> </div> </div> </div>


2021 ◽  
Author(s):  
Alice Portal ◽  
Paolo Ruggieri ◽  
Froila M. Palmeiro ◽  
Javier García-Serrano ◽  
Daniela I. V. Domeisen ◽  
...  

AbstractThe predictability of the Northern Hemisphere stratosphere and its underlying dynamics are investigated in five state-of-the-art seasonal prediction systems from the Copernicus Climate Change Service (C3S) multi-model database. Special attention is devoted to the connection between the stratospheric polar vortex (SPV) and lower-stratosphere wave activity (LSWA). We find that in winter (December to February) dynamical forecasts initialised on the first of November are considerably more skilful than empirical forecasts based on October anomalies. Moreover, the coupling of the SPV with mid-latitude LSWA (i.e., meridional eddy heat flux) is generally well reproduced by the forecast systems, allowing for the identification of a robust link between the predictability of wave activity above the tropopause and the SPV skill. Our results highlight the importance of November-to-February LSWA, in particular in the Eurasian sector, for forecasts of the winter stratosphere. Finally, the role of potential sources of seasonal stratospheric predictability is considered: we find that the C3S multi-model overestimates the stratospheric response to El Niño–Southern Oscillation (ENSO) and underestimates the influence of the Quasi–Biennial Oscillation (QBO).


2019 ◽  
Vol 76 (5) ◽  
pp. 1245-1264 ◽  
Author(s):  
Jinlong Huang ◽  
Wenshou Tian

Abstract This study analyzes the differences and similarities of Eurasian cold air outbreaks (CAOs) under the weak (CAOW), strong (CAOS), and neutral (CAON) stratospheric polar vortex states and examines the potential links between the polar vortex and Eurasian CAOs. The results indicate that the colder surface air temperature (SAT) over Europe in the earlier stages of CAOW events is likely because the amplitude of the preexisting negative North Atlantic Oscillation pattern is larger in CAOW events than in CAON and CAOS events. Marked by the considerably negative stratospheric Arctic Oscillation signals entering the troposphere, the SAT at midlatitudes over eastern Eurasia in CAOW events is colder than in CAON events. A larger diabatic heating rate related to a positive sensible heat flux anomaly in CAOW events likely offsets, to some degree, the cooling effect caused by the stronger cold advection and makes the differences in area-averaged SAT anomalies over northern Eurasia between the CAOW and CAON events look insignificant in most stages. Massive anomalous waves from the low-latitude western Pacific merge over northeastern Eurasia, then weaken the westerly wind over this region to create favorable conditions for southward advection of cold air masses in the earlier stages of all three types of CAOs. This study further analyzes the interannual relationship between the stratospheric polar vortex strength and the intensity of Eurasian CAOs and finds that climate models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5) relative to the reanalysis dataset tend to underestimate the correlation between them. The relationship between them is strengthening under representative concentration pathway 4.5 (RCP4.5) and 8.5 (RCP8.5) scenarios over the period 2006–60. In addition, the intensity of Eurasian CAOs exhibits a decreasing trend in the past and in the future.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Xin Zhou ◽  
Quanliang Chen ◽  
Fei Xie ◽  
Jianping Li ◽  
Minggang Li ◽  
...  

Abstract Variations in tropical sea surface temperatures (SST) have pronounced impacts on the stratospheric polar vortex, with the role of El Niño being the focus of much research interest. However, the Indo–Pacific warm pool (IPWP), which is the warmest body of seawater in the world, has received less attention. The IPWP has been warming in recent years. This paper presents for the first time the remarkable nonlinearity in Northern Hemisphere (NH) stratospheric circulation and temperature response to IPWP warming (the so-called IPWP Niño) in boreal winter. The magnitude of NH stratospheric vortex weakening is strong and significant in case of moderate IPWP Niño, but is weak and insignificant in strong IPWP Niño case. This phenomenon is robust in both the historical simulations and observations. An idealized model experiments forced with linear varying SST forcing in the IPWP region isolate the nonlinearities arising from IPWP Niño strength. Westward extension of precipitation into the Maritime Continent drives attenuation and westward shift of extratropical waves during strong IPWP Niño events. Linear wave interference analysis reveals this leads to weak interference between the climatological and anomalous stationary waves and thereby a weak response of the stratospheric vortex. These findings imply a distinct stratospheric vortex response to the IPWP Niño, and provide extended implications for the surface climate in the NH.


2018 ◽  
Vol 99 (1) ◽  
pp. 49-60 ◽  
Author(s):  
Marlene Kretschmer ◽  
Dim Coumou ◽  
Laurie Agel ◽  
Mathew Barlow ◽  
Eli Tziperman ◽  
...  

Abstract The extratropical stratosphere in boreal winter is characterized by a strong circumpolar westerly jet, confining the coldest temperatures at high latitudes. The jet, referred to as the stratospheric polar vortex, is predominantly zonal and centered around the pole; however, it does exhibit large variability in wind speed and location. Previous studies showed that a weak stratospheric polar vortex can lead to cold-air outbreaks in the midlatitudes, but the exact relationships and mechanisms are unclear. Particularly, it is unclear whether stratospheric variability has contributed to the observed anomalous cooling trends in midlatitude Eurasia. Using hierarchical clustering, we show that over the last 37 years, the frequency of weak vortex states in mid- to late winter (January and February) has increased, which was accompanied by subsequent cold extremes in midlatitude Eurasia. For this region, 60% of the observed cooling in the era of Arctic amplification, that is, since 1990, can be explained by the increased frequency of weak stratospheric polar vortex states, a number that increases to almost 80% when El Niño–Southern Oscillation (ENSO) variability is included as well.


2020 ◽  
Author(s):  
Raphael Köhler ◽  
Dörthe Handorf ◽  
Ralf Jaiser ◽  
Klaus Dethloff ◽  
Günther Zängl ◽  
...  

<p>The stratospheric polar vortex is highly variable in winter and thus, models often struggle to capture its variability and strength. Yet, the influence of the stratosphere on the tropospheric circulation becomes highly important in Northern Hemisphere winter and is one of the main potential sources for subseasonal to seasonal prediction skill in mid latitudes. Mid-latitude extreme weather patterns in winter are often preceded by sudden stratospheric warmings (SSWs), which are the strongest manifestation of the coupling between stratosphere and troposphere. Misrepresentation of the SSW-frequency and stratospheric biases in models can therefore also cause biases in the troposphere.</p><p>In this context this work comprises the analysis of four seasonal ensemble experiments with a high-resolution, nonhydrostatic global atmospheric general circulation model in numerical weather prediction mode (ICON-NWP). The main focus thereby lies on the variability and strength of the stratospheric polar vortex. We identified the gravity wave drag parametrisations as one important factor influencing stratospheric dynamics. As the control experiment with default gravity wave drag settings exhibits an overestimated amount of SSWs and a weak stratospheric polar vortex, three sensitivity experiments with adjusted drag parametrisations were generated. Hence, the parametrisations for the non-orographic gravity wave drag and the subgrid‐scale orographic (SSO) drag were chosen with the goal of strengthening the stratospheric polar vortex. Biases to ERA-Interim are reduced with both adjustments, especially in high latitudes. Whereas the positive effect of the reduced non-orographic gravity wave drag is strongest in the mid-stratosphere in winter, the adjusted SSO-scheme primarily affects the troposphere by reducing mean sea level pressure biases in all months. A fourth experiment using both adjustments exhibits improvements in the troposphere and stratosphere. Although the stratospheric polar vortex in winter is strengthened in all sensitivity experiments, it is still simulated too weak compared to ERA-Interim. Further mechanisms causing this weakness are also investigated in this study.</p>


2014 ◽  
Vol 27 (7) ◽  
pp. 2699-2713 ◽  
Author(s):  
Bradley M. Hegyi ◽  
Yi Deng ◽  
Robert X. Black ◽  
Renjun Zhou

Abstract Perpetual winter simulations using the NCAR Whole Atmosphere Community Climate Model (WACCM) are conducted to document the differences of the initial transient response of the boreal winter Northern Hemisphere stratospheric polar vortex to central (CPW) and eastern Pacific warming (EPW) events. Idealized patches of positive sea surface temperature (SST) anomalies are superimposed onto a climatological SST field to mimic canonical CPW and EPW forcings. A 20-member ensemble was created by varying initial atmospheric conditions for both CPW and EPW cases. In the ensemble average, the vortex weakens under both CPW and EPW forcing, indicated by a negative zonal mean zonal wind tendency. This tendency is mainly tied to changes in the eddy-driven mean meridional circulation (MMC). A negative anomaly in the eddy momentum flux convergence also plays a secondary role in the weakening. The vortex response, however, differs dramatically among individual ensemble members. A few ensemble members exhibit initial vortex strengthening although weaker in magnitude and shorter in duration than the initial weakening in the ensemble average. The initial state and the subsequent internal variation of the extratropical atmosphere is at least as important as the type of SST forcing in determining the transient response of the stratospheric polar vortex. Interactions between the internal variability of the vortex and SST-driven wave anomalies ultimately determine the nature of the initial transient response of the vortex to EPW and CPW forcing. This sensitivity to the initial atmospheric state has implications for understanding medium-range forecasts of the extratropical atmospheric response to emerging tropical SST anomalies, particularly over high-latitude regions.


2020 ◽  
Author(s):  
Alice Portal ◽  
Paolo Ruggieri ◽  
Froila Palmeiro ◽  
Javier Garcìa-Serrano ◽  
Daniela Domeisen ◽  
...  

<p>Advances in the development of seasonal forecast systems allow skillful predictions of the atmospheric flow in the extratropics. Recent studies have highlighted the importance of stratospheric processes in climate variability at seasonal time scales, while their representation and impact in seasonal prediction is yet to be understood. Here stratospheric variability and predictability in boreal winter are evaluated on the seasonal range, using multi-model retrospective forecasts initialised in November. A novel focus is adopted to assess troposphere-stratosphere coupling (i.e., the interaction between upper-tropospheric eddy heat flux and the stratospheric polar vortex) on the basis of the empirical relation derived by Hinssen and Ambaum (2010)<sup>[1]</sup>. Results indicate that dynamical predictions perform better than persistence forecasts and show significant skill up to lead season one (December to February). We find that seasonal anomalies of stratospheric zonal-mean zonal wind in the extratropics are mostly explained by anomalous tropospheric eddy heat flux; the response to tropospheric wave forcing is weaker in models than in reanalysis. Furthermore, we demonstrate that skillful seasonal stratospheric forecasts benefit from residual predictability of the heat flux over the Pacific sector, while further improvements are limited by current unpredictability of the Eurasian heat flux on the seasonal time scale. Sources of long-term predictability are examined and reveal a potential influence of the QBO, Arctic sea ice, Eurasian snow cover and ENSO. This work is realised using data from the seasonal Copernicus Climate Change Service multi-model (November initialisations from 1993 to 2016) and from ERA-Interim reanalysis.</p><p>[1] Hinssen,  Y. B. L. and Ambaum,  M. H. P.:  Relation between the 100-hPa heat flux and stratospheric potential vorticity, J. Atmos.Sci., 67, 4017–4027, 2010.</p>


2018 ◽  
Vol 31 (21) ◽  
pp. 9001-9014 ◽  
Author(s):  
Hainan Gong ◽  
Lin Wang ◽  
Wen Zhou ◽  
Wen Chen ◽  
Renguang Wu ◽  
...  

This study revisits the northern mode of East Asian winter monsoon (EAWM) variation and investigates its response to global warming based on the ERA dataset and outputs from phase 5 of the Coupled Model Intercomparison Project (CMIP5) models. Results show that the observed variation in East Asian surface air temperature (EAT) is tightly coupled with sea level pressure variation in the expanded Siberian high (SH) region during boreal winter. The first singular value decomposition (SVD) mode of the EAT and SH explains 95% of the squared covariance in observations from 1961 to 2005, which actually represents the northern mode of EAWM variation. Meanwhile, the first SVD mode of the EAT and SH is verified to be equivalent to the first empirical orthogonal function mode (EOF1) of the EAT and SH, respectively. Since the leading mode of the temperature variation is significantly influenced by radiative forcing in a rapidly warming climate, for reliable projection of long-term changes in the northern mode of the EAWM, we further employ the EOF1 mode of the SH to represent the northern mode of EAWM variation. The models can well reproduce this coupling between the EAT and SH in historical simulations. Meanwhile, a robust weakening of the northern mode of the EAWM is found in the RCP4.5 scenario, and with stronger warming in the RCP8.5 scenario, the weakening of the EAWM is more pronounced. It is found that the weakening of the northern mode of the EAWM can contribute 6.7% and 9.4% of the warming trend in northern East Asian temperature under the RCP4.5 and RCP8.5 scenarios, respectively.


2019 ◽  
Vol 32 (16) ◽  
pp. 5235-5250 ◽  
Author(s):  
Hainan Gong ◽  
Lin Wang ◽  
Wen Chen ◽  
Renguang Wu ◽  
Wen Zhou ◽  
...  

AbstractThe wintertime Arctic Oscillation (AO) pattern in phase 5 of the Coupled Model Intercomparison Project (CMIP5) climate models displays notable differences from the reanalysis. The North Pacific center of the AO pattern is larger in the ensemble mean of 27 models than in the reanalysis, and the magnitude of the North Pacific center of the AO pattern varies largely among the models. This study investigates the plausible sources of the diversity of the AO pattern in the models. Analysis indicates that the amplitude of the North Pacific center is associated with the coupling between the North Pacific and North Atlantic, which in turn is primarily modulated by the strength of the stratospheric polar vortex. A comparative analysis is conducted for the strong polar vortex (SPV) and weak polar vortex (WPV) models. It reveals that a stronger stratospheric polar vortex induces more planetary waves to reflect from the North Pacific to the North Atlantic and more wave activity fluxes to propagate from the North Pacific to the North Atlantic in the SPV models than in the WPV models. Thus, the coupling of atmospheric circulation between the North Pacific and North Atlantic is stronger in the SPV models, which facilitates more North Pacific variability to be involved in the AO variability and induces a stronger North Pacific center in the AO pattern. The increase in vertical resolution may improve the simulation of the stratospheric polar vortex and thereby reduces the model biases in the North Pacific–North Atlantic coupling and thereby the amplitude of the North Pacific center of the AO pattern in models.


Sign in / Sign up

Export Citation Format

Share Document