scholarly journals Osteopontin ImpactsWest Nile virusPathogenesis and Resistance by Regulating Inflammasome Components and Cell Death in the Central Nervous System at Early Time Points

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Nikki Bortell ◽  
Claudia Flynn ◽  
Bruno Conti ◽  
Howard S. Fox ◽  
Maria Cecilia G. Marcondes

Osteopontin (OPN) is a molecule that is common in central nervous system (CNS) pathologies, which participates in the activation, migration, and survival of inflammatory cells. However, the mechanisms by which OPN modulates inflammatory pathways are not clear. To understand the role of OPN in CNS viral infections, we used a lethal mouse model ofWest Nile virus(WNV), characterized by the injection of high doses of the Eg101 strain of WNV, causing the increase of OPN levels in the brain since early time points. To measure the impact of OPN in neuropathogenesis and resistance, we compared C57BI/6 WT with mice lacking the OPN gene (OPN KO). OPN KO presented a significantly higher mortality compared to WT mice, detectable since day 5 pi. Our data suggests that OPN expression at early time points may provide protection against viral spread in the CNS by negatively controlling the type I IFN-sensitive, caspase 1-dependent inflammasome, while promoting an alternative caspase 8-associated pathway, to control the apoptosis of infected cells during WNV infection in the CNS. Overall, we conclude that the expression of OPN maintains a critical threshold in the innate immune response that controls apoptosis and lethal viral spread in early CNS infection.

2006 ◽  
Vol 80 (18) ◽  
pp. 9082-9092 ◽  
Author(s):  
Stefan Kunz ◽  
Jillian M. Rojek ◽  
Amanda J. Roberts ◽  
Dorian B. McGavern ◽  
Michael B. A. Oldstone ◽  
...  

ABSTRACT Neonatal infection of most mouse strains with lymphocytic choriomeningitis virus (LCMV) leads to a life-long persistent infection characterized by high virus loads in the central nervous system (CNS) in the absence of inflammation and tissue destruction. These mice, however, exhibit impaired learning and memory. The occurrence of cognitive defects in the absence of overt CNS pathology led us to the hypothesis that chronic virus infection may contribute to neuronal dysfunction by altering the host's gene expression profile. To test this hypothesis, we examined the impact of LCMV persistence on host gene expression in the CNS. To model the natural route of human congenital CNS infection observed with a variety of viruses, we established a persistently infected mouse colony where the virus was maintained via vertical transmission from infected mothers to offspring (LCMV-cgPi). LCMV-cgPi mice exhibited a lifelong persistent infection involving the CNS; the infection was associated with impaired spatial-temporal learning. Despite high viral loads in neurons of the brains of adult LCMV-cgPi mice, we detected changes in the host's CNS gene expression for only 75 genes, 56 and 19 being significantly induced and reduced, respectively. The majority of the genes induced in the brain of LCMV-cgPi mice were interferon (IFN)-stimulated genes (ISGs) and included the transcription factors STAT1 and IRF9, the ISG15 protease UBP43, and the glucocorticoid attenuated-response genes GARG16 and GARG49. Based on their crucial role in antiviral defense, these ISGs may play an important role in limiting viral spread and replication. However, since IFNs have also been implicated in adverse effects on neuronal function, the chronic induction of some ISGs may also contribute to the observed cognitive impairment.


2021 ◽  
pp. 104853
Author(s):  
Paula Eillanny Silva Marinho ◽  
Galileu Barbosa Costa ◽  
Ana Paula Correia Crispim ◽  
Pedro Paulo Martins Alvarenga ◽  
Talitah Michel Sanchez Candiani ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Lu Zhang ◽  
Cui Jiao ◽  
Lingjuan Liu ◽  
Aiping Wang ◽  
Li Tang ◽  
...  

Nucleotide oligomerization domain-like receptors (NLRs), a class of pattern recognition receptors, participate in the host’s first line of defense against invading pathogenic microorganisms. NLR family caspase recruitment domain containing 5 (NLRC5) is the largest member of the NLR family and has been shown to play an important role in inflammatory processes, angiogenesis, immunity, and apoptosis by regulating the nuclear factor-κB, type I interferon, and inflammasome signaling pathways, as well as the expression of major histocompatibility complex I genes. Recent studies have found that NLRC5 is also associated with neuronal development and central nervous system (CNS) diseases, such as CNS infection, cerebral ischemia/reperfusion injury, glioma, multiple sclerosis, and epilepsy. This review summarizes the research progress in the structure, expression, and biological characteristics of NLRC5 and its relationship with the CNS.


2020 ◽  
Vol 2020 ◽  
pp. 1-5
Author(s):  
Antonio Piralla ◽  
Laura Pellegrinelli ◽  
Federica Giardina ◽  
Cristina Galli ◽  
Sandro Binda ◽  
...  

Background. Enteroviruses (EVs) can cause infections and outbreaks of mild to severe diseases, such as central nervous system (CNS) and systemic infections. The contribution of EVs to acute CNS/systemic infections requiring hospitalization was assessed by analysing data extracted from virology laboratory database. Methods. Real-life data obtained from two molecular virology laboratories located in Northern Italy were retrieved from databases and analysed retrospectively. The queries used to extract the data were (i) requests for EV-RNA detection in clear cerebrospinal fluid (CSF) specimens collected from hospitalized patients with suspected acute CNS (including aseptic meningitis, encephalitis, and acute flaccid myelitis/paralysis) or systemic infections (sepsis-like illness or fever (≥ 38°C) of unknown origin), (ii) CSF samples collected from January 1st, 2015, to December 31st, 2017. Results. 582 requests of EV-RNA detection in CSF samples collected from as many patients of any age were recorded. EV-RNA was detected in 4.5% of the CSF samples; 92.3% of EV-positive cases were patients<15 years, 58.3% of whom were < 3 months. EVs circulated all-year-round, and the highest EV-positive rates were observed from May to August. The risk of EV infection and the relative illness ratio value among children<1−year−old were significantly higher than those observed for older patients. Conclusions. EV surveillance should be carried out for all pediatric patients<15 years and especially children less than 1 year of age with clinically suspected CNS infection/systemic infections. The implementation of a laboratory-based surveillance established for analysing the virological data provided by laboratories that routinely perform EV molecular testing may enable us to determine the impact of EVs that can cause infections requiring hospitalization.


2021 ◽  
Vol 95 (10) ◽  
Author(s):  
Alain Le Coupanec ◽  
Marc Desforges ◽  
Benedikt Kaufer ◽  
Philippe Dubeau ◽  
Marceline Côté ◽  
...  

ABSTRACT Human coronaviruses (HCoV) are respiratory pathogens which have been known since the 1960s. In December 2019, a new betacoronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was reported, and it is responsible for one of the biggest pandemics of the last 2 centuries. Available evidence suggests that similar to the case with the HCoV-OC43 strain, SARS-CoV-2 neuroinvasion is associated with potential neurological disorders. Coronavirus infection of the central nervous system (CNS) is largely controlled by a viral factor, the spike glycoprotein (S), and a host factor, innate immunity. However, the interaction between these two factors remains elusive. Proteolytic cleavage of the S protein can occur at the interface between receptor binding (S1) and fusion (S2) domains (S1/S2), as well as in a position adjacent to a fusion peptide within S2 (S2′). In this study, using HCoV-OC43 as a surrogate for SARS-CoV-2, we determined that both S protein sites are involved in neurovirulence and are required for optimal CNS infection. Whereas efficient cleavage at S1/S2 is associated with decreased virulence, the potentially cleavable putative S2′ site is essential for efficient viral infection. Furthermore, type 1 interferon (IFN-1)-related innate immunity also plays an important role in the control of viral spread toward the spinal cord, by preventing infection of ependymal cells. Our results underline the link between the differential S cleavage and IFN-1 in the prevention of viral spread, to control the severity of infection and pathology in both immunocompetent and immunodeficient mice. Taken together, these results point toward two potential therapeutic antiviral targets: cleavage of the S protein in conjunction with efficient IFN-1-related innate immunity to prevent or at least reduce neuroinvasion, neural spread, and potential associated neurovirulence of human coronaviruses. IMPORTANCE Human coronaviruses (HCoV) are recognized respiratory pathogens. The emergence of the novel pathogenic member of this family in December 2019 (SARS-CoV-2, which causes COVID-19) poses a global health emergency. As with other coronaviruses reported previously, invasion of the human central nervous system (CNS), associated with diverse neurological disorders, was suggested for SARS-CoV-2. Herein, using the related HCoV-OC43 strain, we show that the viral spike protein constitutes a major neurovirulence factor and that type 1 interferon (IFN-1), in conjunction with cleavage of S protein by host proteases, represents an important host factor that participates in the control of CNS infection. To our knowledge, this is the first demonstration of a direct link between cleavage of the S protein, innate immunity, and neurovirulence. Understanding mechanisms of viral infection and spread in neuronal cells is essential to better design therapeutic strategies, and to prevent infection by human coronaviruses such as SARS-CoV-2 in the human CNS, especially in vulnerable populations such as the elderly and immunocompromised individuals.


2021 ◽  
Author(s):  
Ke Lin ◽  
Hao-Cheng Zhang ◽  
Yi Zhang ◽  
Yang Zhou ◽  
Zhang-Fan Fu ◽  
...  

Abstract Background Timely and precise etiology diagnosis is crucial for optimized medication regimens and better prognosis in central nervous system infections (CNS infections). We aimed to analyze the impact of mNGS tests on the management of patients with CNS infections. Methods We conducted a single-center retrospective cohort study to analyze the value of mNGS in clinical application. Three hundred sixty-nine patients with a specific CNS infection diagnosis were enrolled, and their clinical data were collected. CDI and DDI were defined in our study to describe the intensity of drug use in different groups. We also used LOH and mRS to evaluate whether the application of mNGS could benefit CNS infection patients. Results mNGS reported a 91.67% sensitivity in culture-positive patients and an 88.24% specificity compared with the final diagnoses. Patients performed with the mNGS test had less drug use, both total (58.77 vs. 81.18) and daily (22.6 vs. 28.12, p <0.1, McNemar) intensity of drug use, as well as the length of hospitalization (23.14 vs. 24.29). Patients with consciousness grading 1 and 3 had a decrease in CDI (Grade1, 86.49 vs. 173.37; Grade 3, 48.18 vs. 68.21), DDI (Grade1, 1.52 vs. 2.72; Grade 3, 2.3 vs. 2.45) and LOH (Grade1, 32 vs. 40; Grade 3, 21 vs. 23) with the application of mNGS. Patients infected with bacteria in CNS had a reduced CDI, DDI, and LOH in the mNGS Group, in contrast with the TraE Group. 49% of patients altered medication plans, and 24.7% of patients reduced drug intensity four days after mNGS reports, mostly due to the reduction of drug types. Conclusion mNGS showed its high sensitivity and specificity characteristics. mNGS may assist clinicians with more rational medication regimens and reduce the drug intensity of patients, of which the primary way was to reduce the variety of drugs, especially for severe patients and bacterial infections. mNGS has the potential value of improving the prognosis of CNS infectious patients.


2015 ◽  
Vol 89 (21) ◽  
pp. 11011-11018 ◽  
Author(s):  
Alicia M. Holmgren ◽  
Katelyn D. Miller ◽  
Sarah E. Cavanaugh ◽  
Glenn F. Rall

ABSTRACTIn permissive mouse central nervous system (CNS) neurons, measles virus (MV) spreads in the absence of hallmark viral budding or neuronal death, with transmission occurring efficiently and exclusively via the synapse. MV infection also initiates a robust type I interferon (IFN) response, resulting in the synthesis of a large number of genes, including bone marrow stromal antigen 2 (Bst2)/tetherin/CD317. Bst2 restricts the release of some enveloped viruses, but to date, its role in viral infection of neurons has not been assessed. Consequently, we investigated how Bst2 was induced and what role it played in MV neuronal infection. The magnitude of induction of neuronal Bst2 RNA and protein following IFN exposure and viral infection was notably higher than in similarly treated mouse embryo fibroblasts (MEFs). Bst2 synthesis was both IFN and Stat1 dependent. Although Bst2 prevented MV release from nonneuronal cells, its deletion had no effect on viral pathogenesis in MV-challenged mice. Our findings underscore how cell-type-specific differences impact viral infection and pathogenesis.IMPORTANCEViral infections of the central nervous system can lead to debilitating disease and death. Moreover, it is becoming increasingly clear that nonrenewable cells, including most central nervous system neurons, combat neurotropic viral infections in fundamentally different ways than other rapidly dividing and renewable cell populations. Here we identify type I interferon signaling as a key inducer of a known antiviral protein (Bst2) in neurons. Unexpectedly, the gene is dispensable for clearance of neurotropic viral infection despite its well-defined contribution to limiting the spread of enveloped viruses in proliferating cells. A deeper appreciation of the importance of cell type heterogeneity in antiviral immunity will aid in the identification of unique therapeutic targets for life-threatening viral infections.


Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 348
Author(s):  
Francesco Menzella ◽  
Giulia Ghidoni ◽  
Carla Galeone ◽  
Silvia Capobelli ◽  
Chiara Scelfo ◽  
...  

Viral respiratory infections are recognized risk factors for the loss of control of allergic asthma and the induction of exacerbations, both in adults and children. Severe asthma is more susceptible to virus-induced asthma exacerbations, especially in the presence of high IgE levels. In the course of immune responses to viruses, an initial activation of innate immunity typically occurs and the production of type I and III interferons is essential in the control of viral spread. However, the Th2 inflammatory environment still appears to be protective against viral infections in general and in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections as well. As for now, literature data, although extremely limited and preliminary, show that severe asthma patients treated with biologics don’t have an increased risk of SARS-CoV-2 infection or progression to severe forms compared to the non-asthmatic population. Omalizumab, an anti-IgE monoclonal antibody, exerts a profound cellular effect, which can stabilize the effector cells, and is becoming much more efficient from the point of view of innate immunity in contrasting respiratory viral infections. In addition to the antiviral effect, clinical efficacy and safety of this biological allow a great improvement in the management of asthma.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii438-iii438
Author(s):  
Kathleen Dorris ◽  
Jessica Channell ◽  
Ashley Mettetal ◽  
Molly Hemenway ◽  
Natalie Briones ◽  
...  

Abstract BACKGROUND Cannabinoids, including cannabidiol (CBD) and tetrahydrocannabinol (THC), are a class of compounds found in marijuana. Numerous studies in adults have examined cannabinoid use in management of cancer-related symptoms such as nausea, anorexia, and pain. Less is known about the use in the pediatric oncology population. METHODS A prospective observational study has been ongoing since 2016 at Children’s Hospital Colorado to evaluate cannabinoids’ impact using PedsQL™ modules on quality of life of pediatric patients with central nervous system (CNS) tumors who are 2–18 years old. Laboratory assessments of T-cell activity and pharmacokinetics of CBD, THC and associated metabolites are in process. Diaries with exploratory information on cannabinoid use patterns are being collected. RESULTS Thirty-three patients (14:19; male:female) have been enrolled with a median age of 6.4 years (range, 2.9–17.7 years). The most common tumor type in enrolled patients is embryonal tumors (13/33; 39%). Nine (27%) patients have low-grade glial/glioneuronal tumors, and eight (24%) had high-grade/diffuse midline gliomas. The remaining patients had ependymoma or craniopharyngioma. The median time on cannabinoids is 9 months. Most (n=20) patients have used oral products with CBD and THC. One patient continues on cannabinoid therapy in follow up. Preliminary immune function analyses identified impaired neutrophil superoxide anion production and chemotaxis in patients taking cannabinoids at early time points on therapy. CONCLUSIONS Families of children with various CNS tumors are pursuing cannabinoid therapy for both antitumor and supportive care purposes. Analysis of the impact of cannabinoids on patients’ quality of life is ongoing.


Sign in / Sign up

Export Citation Format

Share Document