scholarly journals Mechanical and Parametric Analysis of Cracks in Polypropylene Fiber Concrete U-Shaped Girder

2017 ◽  
Vol 2017 ◽  
pp. 1-10
Author(s):  
Xu Dong ◽  
Shuchen Li ◽  
Zhenquan Deng ◽  
Jian Guo ◽  
Haican Zhou

The U-shaped girder is a type of open thin-walled structure, which is used in urban rail transit engineering. Although it employs polypropylene fiber concrete to avoid cracks, the girder is still easier to crack than other traditional structures owing to its special open thin-walled cross section. In this study, a cracking accident of a U-shaped girder, which happened during the prestressed steel tensioning, was studied by field investigation and mechanical analysis through the finite element (FE) method. An outline of the cracks was presented. The nonlinear material properties of the polypropylene fiber concrete and steel were discussed and used in the finite element model. The effects of the main design parameters, such as the flange slab thickness, anchorage position, and prestressed steel layout, were evaluated based on the results of the FE analysis. The results indicate that the extremely low rigidity of the web and oversize of the web longitudinal prestressed steels are the main reasons for the cracks. The risk of cracks can be reduced by increasing the thickness of the flange slab and changing the anchorage position and prestressed steel layout. Some suggestions are provided for avoiding cracks based on the results of the research.

2017 ◽  
Vol 11 (1) ◽  
pp. 244-257 ◽  
Author(s):  
Xingyou Yao

Background: Cold-formed steel structural sections used in the walls of residential buildings and agricultural facilities are commonly C-shaped sections with web holes. These holes located in the web of sections can alter the elastic stiffness and the ultimate strength of a structural member. The objective of this paper is to study the buckling mode and load-carrying capacity of cold-formed thin-walled steel column with slotted web holes. Methods: Compression tests were conducted on 26 intermediate length columns with and without holes. The tested compressive members included four different kinds of holes. For each specimen, a shell finite element Eigen-buckling analysis and nonlinear analysis were also conducted. The influence of the slotted web hole on local and distortional buckling response had also been studied. The comparison on ultimate strength between test results and calculated results using Chinese cold-formed steel specification GB50018-2002, North American cold-formed steel specification AISI S100-2016, and nonlinear Finite Element method was made. Result: Test results showed that the distortional buckling occurred for intermediate columns with slotted holes and the ultimate strength of columns with holes was less than that of columns without holes. The ultimate strength of columns decreased with the increase in transverse width of hole in the cross-section of member. The Finite element analysis results showed that the web holes could influence on the elastic buckling stress of columns. The shell finite element could be used to model the buckling modes and analysis the ultimate strength of members with slotted web holes. The calculated ultimate strength shows that results predicted with AISI S100-2016 and analyzed using finite element method are close to test results. The calculated results using Chinese code are higher than the test results because Chinese code has no provision to calculate the ultimate strength of members with slotted web holes. Conclusion: The calculated method for cold-formed thin-walled steel columns with slotted web holes are proposed based on effective width method in Chinese code. The results calculated using the proposed method show good agreement with test results and can be used in engineering design for some specific cold-formed steel columns with slotted web holes studied in this paper.


1999 ◽  
Author(s):  
A. Hashemi ◽  
A. Shirazi-Adl

Abstract The finite element (FE) method has been used in orthopaedic biomechanics to investigate the fixation role of different design parameters in total knee replacement (TKA). Previous FE model studies used 2D, axisymmetric and 3D models to represent the geometry while neglecting many essential features. They simulated the bone-implant interface as frictionless, perfectly bonded or with idealized Coulomb’s friction model. The model of screws and posts have also been neglected altogether or inadequately considered in these studies. To overcome these limitations, the objective of the present study was set to develop a detailed 3D FE model of the knee bone-implant structure including all the interacting components in an immediate postoperative period without bony ingrowth to predict the micromotion at the bone-implant interface and stress distribution within the bone and the polyethylene insert.


2021 ◽  
Vol 12 (1) ◽  
pp. 22
Author(s):  
Ya Li ◽  
Hui Yang ◽  
Heyun Lin

This paper presents a comparative study of two consequent-pole switched-flux permanent magnet (CP-SFPM) machines with different U-shaped PM arrangements. In order to address the flux barrier effect in a sandwiched SFPM machine, two different alternate U-shaped PM designs are introduced to improve the torque capability, forming two CP-SFPM machine topologies. In order to reveal the influence of different magnet designs on the torque production, a simplified PM magneto-motive force (MMF)-permeance model is employed to identify the effective working harmonics in the two CP-SFPM machines. The torque contributions of the main working harmonics are subsequently quantified by a hybrid finite-element (FE)/analytical method. Multi-objective genetic algorithm (GA) optimization is then employed to optimize the design parameters of the proposed CP-SFPM machines. In addition, the electromagnetic characteristics of the CP-SFPM machines with two U-shaped PM arrangements are investigated and compared by the FE method. Finally, a 6/13-pole CP-SFPM machine with an optimally selected U-shaped PM structure is manufactured and tested to validate the FE analyses.


2014 ◽  
Vol 8 (1) ◽  
pp. 113-116
Author(s):  
Liuyan Jie ◽  
Ding Lin

In the present work, the simulation analysis of automobile energy-absorbing components was carried out using Finite Element (FE) method. The numerical simulations were carried out using the software LS-DYNA. Automobile energy-absorbing components usually were made of a metal thin walled tube. In the paper, several types of material properties were studied and compared. Results show that the material properties have influence to automobile energy - absorbing components crashworthiness.


2019 ◽  
Author(s):  
Miguel Abambres ◽  
Dinar Camotim ◽  
Miguel Abambres

A 2nd order inelastic Generalised Beam Theory (GBT) formulation based on the J2 flow theory is proposed, being a promising alternative to the shell finite element method. Its application is illustrated for an I-section beam and a lipped-C column. GBT results were validated against ABAQUS, namely concerning equilibrium paths, deformed configurations, and displacement profiles. It was concluded that the GBT modal nature allows (i) precise results with only 22% of the number of dof required in ABAQUS, as well as (ii) the understanding (by means of modal participation diagrams) of the behavioral mechanics in any elastoplastic stage of member deformation .


2018 ◽  
Author(s):  
Miguel Abambres

Original Generalized Beam Theory (GBT) formulations for elastoplastic first and second order (postbuckling) analyses of thin-walled members are proposed, based on the J2 theory with associated flow rule, and valid for (i) arbitrary residual stress and geometric imperfection distributions, (ii) non-linear isotropic materials (e.g., carbon/stainless steel), and (iii) arbitrary deformation patterns (e.g., global, local, distortional, shear). The cross-section analysis is based on the formulation by Silva (2013), but adopts five types of nodal degrees of freedom (d.o.f.) – one of them (warping rotation) is an innovation of present work and allows the use of cubic polynomials (instead of linear functions) to approximate the warping profiles in each sub-plate. The formulations are validated by presenting various illustrative examples involving beams and columns characterized by several cross-section types (open, closed, (un) branched), materials (bi-linear or non-linear – e.g., stainless steel) and boundary conditions. The GBT results (equilibrium paths, stress/displacement distributions and collapse mechanisms) are validated by comparison with those obtained from shell finite element analyses. It is observed that the results are globally very similar with only 9% and 21% (1st and 2nd order) of the d.o.f. numbers required by the shell finite element models. Moreover, the GBT unique modal nature is highlighted by means of modal participation diagrams and amplitude functions, as well as analyses based on different deformation mode sets, providing an in-depth insight on the member behavioural mechanics in both elastic and inelastic regimes.


2021 ◽  
Vol 233 ◽  
pp. 111867
Author(s):  
Xiayuan Li ◽  
Shui Wan ◽  
Yuanhai Zhang ◽  
Maoding Zhou ◽  
Yilung Mo

Author(s):  
Haolei Mou ◽  
Zhenyu Feng ◽  
Jiang Xie ◽  
Jun Zou ◽  
Kun Zhou

AbstractTo analysis the failure and energy absorption of carbon fiber reinforced polymer (CFRP) thin-walled square tube, the quasi-static axial compression loading tests are conducted for [±45]3s square tube, and the square tube after test is scanned to further investigate the failure mechanism. Three different finite element models, i.e. single-layer shell model, multi-layer shell model and stacked shell mode, are developed by using the Puck 2000 matrix failure criterion and Yamada Sun fiber failure criterion, and three models are verified and compared according to the experimental energy absorption metrics. The experimental and simulation results show that the failure mode of [±45]3s square tube is the local buckling failure mode, and the energy are absorbed mainly by intralaminar and interlaminar delamination, fiber elastic deformation, fiber debonding and fracture, matrix deformation cracking and longitudinal crack propagation. Three different finite element models can reproduce the collapse behaviours of [±45]3s square tube to some extent, but the stacked shell model can better reproduce the failure mode, and the difference of specific energy absorption (SEA) is minimum, which shows the numerical simulation results are in better agreement with the test results.


Sign in / Sign up

Export Citation Format

Share Document