scholarly journals Unconventional Role of Caspase-6 in Spinal Microglia Activation and Chronic Pain

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Temugin Berta ◽  
Jee Eun Lee ◽  
Chul-Kyu Park

Chronic pain affects ~20% of the worldwide population. The clinical management of chronic pain is mostly palliative and results in limited success. Current treatments mostly target the symptoms or neuronal signaling of chronic pain. It has been increasingly recognized that glial cells, such as microglia, and inflammatory signaling play a major role in the pathogenesis of chronic pain. Caspases (CASPs) are a family of protease enzymes involved in apoptosis and inflammation. They are pivotal components in a variety of neurological diseases. However, little is known about the role of CASPs in microglial modulation as to chronic pain. In particular, our recent studies have shown that CASP6 regulates chronic pain via microglial inflammatory signaling. Inhibition of microglia and CASP signaling might provide a new strategy for the prevention and treatment of chronic pain.

Author(s):  
Lingyi Huang ◽  
Zizhuo Zheng ◽  
Ding Bai ◽  
Xianglong Han

Abstract: Stem cells from human exfoliated deciduous teeth (SHEDs) are relatively easy to isolate from exfoliated deciduous teeth, which are obtained via dental therapy as biological waste. SHEDs originate from the embryonic neural crest and therefore have considerable potential for neurogenic differentiation. Currently, an increasing amount of research attention is focused on the therapeutic applications of SHEDs in neurological diseases and injuries. In this article, we summarize the biological characteristics of SHEDs and the potential role of SHEDs and their derivatives, including conditioned medium from SHEDs and the exosomes they secrete, in the prevention and treatment of neurological diseases and injuries.


2018 ◽  
Vol 19 (2) ◽  
pp. 242-245 ◽  
Author(s):  
Supriya M Kheur ◽  
Sheetal S Choudhari ◽  
Deepak G Kulkarni ◽  
Sangeeta Patankar

ABSTRACT Oral submucous fibrosis (OSF) is characterized by excessive fibrosis of submucosa. The degree of vascularity in OSF has always been a matter of debate. Angiogenesis is the key mechanism involved in regeneration and repair. It also plays an important role in various pathologic conditions. Angiogenesis may contribute to the progression of fibrosis in fibrotic disorders. Inhibition of pathological angiogenesis is considered to be a new strategy for the treatment of various fibrotic disorders. In OSF, angiogenesis can be related to progression fibrosis. This article briefly describes the role of angiogenesis in pathogenesis of fibrosis in OSF and the importance of inhibition of pathologic angiogenesis in its prevention and treatment. Clinical significance Understanding the association between angiogenesis and fibrogenesis can help in developing new therapeutic strategies for treatment of OSF. How to cite this article Choudhari SS, Kulkarni DG, Patankar S, Kheur SM, Sarode SC, Sarode GS, Patil S. Angiogenesis and Fibrogenesis in Oral Submucous Fibrosis: A Viewpoint. J Contemp Dent Pract 2018;19(2):242-245.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yiwen Liu ◽  
Qing Wu ◽  
Dongmei Wan ◽  
Huiqin He ◽  
Hailian Lin ◽  
...  

Angiotensin-converting enzyme 2 (ACE2) has been identified as the key receptor of SARS coronavirus that plays a key role in the pathogenesis of SARS. It is known that ACE2 mRNA can be expressed in most organs. However, the protein expression of ACE2 is not clear yet. To explore the role of ACE2 as a precipitating factor in digestive organ damage under COVID-19, this study investigated the expression of ACE2 protein in the human liver, esophagus, stomach, and colon. The result showed that ACE2 can be expressed in the liver, esophagus, stomach, and colon, which suggests SARS-CoV-2 may enter the digestive system through ACE2 and cause liver and gastrointestinal damage. It is hoped that the result of the study will provide a new strategy for the prevention and treatment of digestive organ damage under COVID-19.


2020 ◽  
Vol 27 (12) ◽  
pp. 2012-2020 ◽  
Author(s):  
Sebastiano Mercadante ◽  
Patrizia Romualdi

Introduction: Similarly to the μ opioid receptor, kappa opioid receptor (KOR), is present either in the central nervous system or in peripheral tissues. In the last years, several molecules, able to interact with KOR, have been the focus of basic research for their therapeutic potential in the field of chronic pain, as well as in depression, autoimmune disorders and neurological diseases. Discussion: The role of KOR system and the consequent clinical effects derived by its activation or inhibition are discussed. Their potential therapeutic utilization in conditions of stress and drug relapse, besides chronic pain, is presented here, including the possible use of KORagonists in drug addiction. Moreover, the potential role of KOR-antagonists, KOR agonistantagonists and peripheral KOR agonists is proposed. Conclusion: Other than pain, KORs have a role in regulating reward and mood. Due to its location, KORs seem to mediate interactions between psychiatric disorders, addiction and depression. Experimental studies in animal models have identified brain mechanisms that may contribute to clarify specific pathophysiological processes.


2007 ◽  
Author(s):  
Jeffrey I. Gold ◽  
Trina Haselrig ◽  
D. Colette Nicolaou ◽  
Katharine A. Belmont

2020 ◽  
Vol 78 (8) ◽  
pp. 494-500 ◽  
Author(s):  
Adalberto STUDART-NETO ◽  
Bruno Fukelmann GUEDES ◽  
Raphael de Luca e TUMA ◽  
Antonio Edvan CAMELO FILHO ◽  
Gabriel Taricani KUBOTA ◽  
...  

ABSTRACT Background: More than one-third of COVID-19 patients present neurological symptoms ranging from anosmia to stroke and encephalopathy. Furthermore, pre-existing neurological conditions may require special treatment and may be associated with worse outcomes. Notwithstanding, the role of neurologists in COVID-19 is probably underrecognized. Objective: The aim of this study was to report the reasons for requesting neurological consultations by internists and intensivists in a COVID-19-dedicated hospital. Methods: This retrospective study was carried out at Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil, a 900-bed COVID-19 dedicated center (including 300 intensive care unit beds). COVID-19 diagnosis was confirmed by SARS-CoV-2-RT-PCR in nasal swabs. All inpatient neurology consultations between March 23rd and May 23rd, 2020 were analyzed. Neurologists performed the neurological exam, assessed all available data to diagnose the neurological condition, and requested additional tests deemed necessary. Difficult diagnoses were established in consensus meetings. After diagnosis, neurologists were involved in the treatment. Results: Neurological consultations were requested for 89 out of 1,208 (7.4%) inpatient COVID admissions during that period. Main neurological diagnoses included: encephalopathy (44.4%), stroke (16.7%), previous neurological diseases (9.0%), seizures (9.0%), neuromuscular disorders (5.6%), other acute brain lesions (3.4%), and other mild nonspecific symptoms (11.2%). Conclusions: Most neurological consultations in a COVID-19-dedicated hospital were requested for severe conditions that could have an impact on the outcome. First-line doctors should be able to recognize neurological symptoms; neurologists are important members of the medical team in COVID-19 hospital care.


2016 ◽  
Vol 22 (14) ◽  
pp. 2004-2014 ◽  
Author(s):  
Marco Fuenzalida ◽  
Miguel Ángel Pérez ◽  
Hugo R. Arias

2018 ◽  
Vol 18 (7) ◽  
pp. 985-992 ◽  
Author(s):  
Aysegul Hanikoglu ◽  
Ertan Kucuksayan ◽  
Rana Cagla Akduman ◽  
Tomris Ozben

This systematic review aims to elucidate the role of melatonin (N-acetyl-5-metoxy-tryptamine) (MLT) in the prevention and treatment of cancer. MLT is a pineal gland secretory product, an evolutionarily highly conserved molecule; it is also an antioxidant and an impressive protector of mitochondrial bioenergetic activity. MLT is characterized by an ample range of activities, modulating the physiology and molecular biology of the cell. Its physiological functions relate principally to the interaction of G Protein-Coupled MT1 and MT2 trans-membrane receptors (GPCRs), a family of guanidine triphosphate binding proteins. MLT has been demonstrated to suppress the growth of various tumours both, in vivo and in vitro. In this review, we analyze in depth, the antioxidant activity of melatonin, aiming to illustrate the cancer treatment potential of the molecule, by limiting or reversing the changes occurring during cancer development and growth.


Sign in / Sign up

Export Citation Format

Share Document