scholarly journals Integrative Approach to Facilitate Fracture Healing: Topical Chinese Herbal Paste with Oral Strontium Ranelate

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Wing-Sum Siu ◽  
Hoi-Ting Shiu ◽  
Chun-Hay Ko ◽  
Wai-Ting Shum ◽  
Ho-Nam Yu ◽  
...  

Strontium ranelate (SrR) is one of the pharmaceutical agents reported to be effective on the promotion of fracture healing. This study aimed to evaluate the integrative effect of the oral SrR with a topical Chinese herbal paste, namely, CDR, on facilitation of bone healing. The in vivo efficacy was evaluated using rats with tibial fracture. They were treated with either CDR topically, or SrR orally, or their combined treatments. The in vivo results illustrated a significant additive effect of CDR on SrR in increasing the yield load of the fractured tibia. The in vitro results showed that neither SrR nor CDR exhibited a cytotoxic effect on UMR106 and bone-marrow stem cell (BMSC), but both of them increased the proliferation of BMSC at low concentrations. The combination of CDR at 200 μg/mL with SrR at 200 or 400 μg/ml also showed an additive effect on increasing the ALP activity of BMSC. Both SrR and CDR alone reduced osteoclast formation, and the effective concentration of SrR to inhibit osteoclastogenesis was reduced in the presence of CDR. This integrative approach by combining oral SrR and topical CDR is effective in promoting fracture healing properly due to their additive effects on proosteogenic and antiosteoclastogenic properties.

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Alexandra Wallimann ◽  
Walker Magrath ◽  
Brenna Pugliese ◽  
Nino Stocker ◽  
Patrick Westermann ◽  
...  

Short-chain fatty acids (SCFAs) produced by the gut microbiota have previously been demonstrated to play a role in numerous chronic inflammatory diseases and to be key mediators in the gut-bone signaling axis. However, the role of SCFAs in bone fracture healing and its impact on systemic inflammation during the regeneration process has not been extensively investigated yet. The aim of this study was to first determine the effects of the SCFA butyrate on key cells involved in fracture healing in vitro, namely, osteoclasts and mesenchymal stromal cells (MSCs), and second, to assess if butyrate supplementation or antibiotic therapy impacts bone healing, systemic immune status, and inflammation levels in a murine osteotomy model. Butyrate significantly reduced osteoclast formation and resorption activity in a dose-dependent manner and displayed a trend for increased calcium deposits in MSC cultures. Numerous genes associated with osteoclast differentiation were differentially expressed in osteoclast precursor cells upon butyrate exposure. In vivo, antibiotic-treated mice showed reduced SCFA levels in the cecum, as well as a distinct gut microbiome composition. Furthermore, circulating proinflammatory TNFα, IL-17a, and IL-17f levels, and bone preserving osteoprotegerin (OPG), were increased in antibiotic-treated mice compared to controls. Antibiotic-treated mice also displayed a trend towards delayed bone healing as revealed by reduced mineral apposition at the defect site and higher circulating levels of the bone turnover marker PINP. Butyrate supplementation resulted in a lower abundance of monocyte/macrophages in the bone marrow, as well as reduced circulating proinflammatory IL-6 levels compared to antibiotic- and control-treated mice. In conclusion, this study supports our hypothesis that SCFAs, in particular butyrate, are important contributors to successful bone healing by modulating key cells involved in fracture healing as well as systemic inflammation and immune responses.


1977 ◽  
Vol 16 (04) ◽  
pp. 157-162 ◽  
Author(s):  
C. Schümichen ◽  
B. Mackenbrock ◽  
G. Hoffmann

SummaryThe bone-seeking 99mTc-Sn-pyrophosphate compound (compound A) was diluted both in vitro and in vivo and proved to be unstable both in vitro and in vivo. However, stability was much better in vivo than in vitro and thus the in vitro stability of compound A after dilution in various mediums could be followed up by a consecutive evaluation of the in vivo distribution in the rat. After dilution in neutral normal saline compound A is metastable and after a short half-life it is transformed into the other 99mTc-Sn-pyrophosphate compound A is metastable and after a short half-life in bone but in the kidneys. After dilution in normal saline of low pH and in buffering solutions the stability of compound A is increased. In human plasma compound A is relatively stable but not in plasma water. When compound B is formed in a buffering solution, uptake in the kidneys and excretion in urine is lowered and blood concentration increased.It is assumed that the association of protons to compound A will increase its stability at low concentrations while that to compound B will lead to a strong protein bond in plasma. It is concluded that compound A will not be stable in vivo because of a lack of stability in the extravascular space, and that the protein bond in plasma will be a measure of its in vivo stability.


Author(s):  
Alison Gartland ◽  
Katherine A. Buckley ◽  
Robert A. Hipskind ◽  
M. J. Perry ◽  
J. H. Tobias ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1982
Author(s):  
Wataru Ariyoshi ◽  
Shiika Hara ◽  
Ayaka Koga ◽  
Yoshie Nagai-Yoshioka ◽  
Ryota Yamasaki

Although the anti-tumor and anti-infective properties of β-glucans have been well-discussed, their role in bone metabolism has not been reviewed so far. This review discusses the biological effects of β-glucans on bone metabolisms, especially on bone-resorbing osteoclasts, which are differentiated from hematopoietic precursors. Multiple immunoreceptors that can recognize β-glucans were reported to be expressed in osteoclast precursors. Coordinated co-stimulatory signals mediated by these immunoreceptors are important for the regulation of osteoclastogenesis and bone remodeling. Curdlan from the bacterium Alcaligenes faecalis negatively regulates osteoclast differentiation in vitro by affecting both the osteoclast precursors and osteoclast-supporting cells. We also showed that laminarin, lichenan, and glucan from baker’s yeast, as well as β-1,3-glucan from Euglema gracilisas, inhibit the osteoclast formation in bone marrow cells. Consistent with these findings, systemic and local administration of β-glucan derived from Aureobasidium pullulans and Saccharomyces cerevisiae suppressed bone resorption in vivo. However, zymosan derived from S. cerevisiae stimulated the bone resorption activity and is widely used to induce arthritis in animal models. Additional research concerning the relationship between the molecular structure of β-glucan and its effect on osteoclastic bone resorption will be beneficial for the development of novel treatment strategies for bone-related diseases.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 154.1-154
Author(s):  
M. Pfeiffenberger ◽  
A. Damerau ◽  
P. Hoff ◽  
A. Lang ◽  
F. Buttgereit ◽  
...  

Background:Approximately 10% of fractures lead to significant fracture healing disorders, with a tendency to further increase due to the aging population. Of note, especially immunosuppressed patients with ongoing inflammation show difficulties in the correct course of fracture healing leading to fracture healing disorders. Most notably, invading immune cells and secreted cytokines are considered to provide an inflammatory microenvironment within the fracture gap, primarily during the initial phase of fracture healing. Current research has the focus on small animal models, facing the problem of translation towards the human system. In order to improve the therapy of fracture healing disorders, we have developed a human cell-basedin vitromodel to mimic the initial phase of fracture healing adequately. This model will be used for the development of new therapeutic strategies.Objectives:Our aim is to develop anin vitro3D fracture gap model (FG model) which mimics thein vivosituation in order to provide a reliable preclinical test system for fracture healing disorders.Methods:To assemble our FG model, we co-cultivated coagulated peripheral blood and primary human mesenchymal stromal cells (MSCs) mimicking the fracture hematoma (FH model) together with a scaffold-free bone-like construct mimicking the bony part of the fracture gap for 48 h under hypoxic conditions (n=3), in order to reflect thein vivosituation after fracture most adequately. To analyze the impact of the bone-like construct on thein vitroFH model with regard to its osteogenic induction capacity, we cultivated the fracture gap models in either medium with or without osteogenic supplements. To analyze the impact of Deferoxamine (DFO, known to foster fracture healing) on the FG model, we further treated our FG models with either 250 µmol DFO or left them untreated. After incubation and subsequent preparation of the fracture hematomas, we evaluated gene expression of osteogenic (RUNX2,SPP1), angiogenic (VEGF,IL8), inflammatory markers (IL6,IL8) and markers for the adaptation towards hypoxia (LDHA,PGK1) as well as secretion of cytokines/chemokines using quantitative PCR and multiplex suspension assay, respectively.Results:We found via histology that both the fracture hematoma model and the bone-like construct had close contact during the incubation, allowing the cells to interact with each other through direct cell-cell contact, signal molecules or metabolites. Additionally, we could show that the bone-like constructs induced the upregulation of osteogenic markers (RUNX2, SPP1) within the FH models irrespective of the supplementation of osteogenic supplements. Furthermore, we observed an upregulation of hypoxia-related, angiogenic and osteogenic markers (RUNX2,SPP1) under the influence of DFO, and the downregulation of inflammatory markers (IL6,IL8) as compared to the untreated control. The latter was also confirmed on protein level (e.g. IL-6 and IL-8). Within the bone-like constructs, we observed an upregulation of angiogenic markers (RNA-expression ofVEGF,IL8), even more pronounced under the treatment of DFO.Conclusion:In summary, our findings demonstrate that our establishedin vitroFG model provides all osteogenic cues to induce the initial bone healing process, which could be enhanced by the fracture-healing promoting substance DFO. Therefore, we conclude that our model is indeed able to mimic correctly the human fracture gap situation and is therefore suitable to study the influence and efficacy of potential therapeutics for the treatment of bone healing disorders in immunosuppressed patients with ongoing inflammation.Disclosure of Interests:Moritz Pfeiffenberger: None declared, Alexandra Damerau: None declared, Paula Hoff: None declared, Annemarie Lang: None declared, Frank Buttgereit Grant/research support from: Amgen, BMS, Celgene, Generic Assays, GSK, Hexal, Horizon, Lilly, medac, Mundipharma, Novartis, Pfizer, Roche, and Sanofi., Timo Gaber: None declared


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Hideki Kitaura ◽  
Keisuke Kimura ◽  
Masahiko Ishida ◽  
Haruka Kohara ◽  
Masako Yoshimatsu ◽  
...  

Tumor necrosis factor-α(TNF-α) is a cytokine produced by monocytes, macrophages, and T cells and is induced by pathogens, endotoxins, or related substances. TNF-αmay play a key role in bone metabolism and is important in inflammatory bone diseases such as rheumatoid arthritis. Cells directly involved in osteoclastogenesis include macrophages, which are osteoclast precursor cells, osteoblasts, or stromal cells. These cells express receptor activator of NF-κB ligand (RANKL) to induce osteoclastogenesis, and T cells, which secrete RANKL, promote osteoclastogenesis during inflammation. Elucidating the detailed effects of TNF-αon bone metabolism may enable the identification of therapeutic targets that can efficiently suppress bone destruction in inflammatory bone diseases. TNF-αis considered to act by directly increasing RANK expression in macrophages and by increasing RANKL in stromal cells. Inflammatory cytokines such as interleukin- (IL-) 12, IL-18, and interferon-γ(IFN-γ) strongly inhibit osteoclast formation. IL-12, IL-18, and IFN-γinduce apoptosis in bone marrow cells treated with TNF-α  in vitro, and osteoclastogenesis is inhibited by the interactions of TNF-α-induced Fas and Fas ligand induced by IL-12, IL-18, and IFN-γ. This review describes and discusses the role of cells concerned with osteoclast formation and immunological reactions in TNF-α-mediated osteoclastogenesisin vitroandin vivo.


2009 ◽  
Vol 191 (6) ◽  
pp. 1749-1755 ◽  
Author(s):  
Jeffrey G. Gardner ◽  
Jorge C. Escalante-Semerena

ABSTRACT This report provides in vivo evidence for the posttranslational control of the acetyl coenzyme A (Ac-CoA) synthetase (AcsA) enzyme of Bacillus subtilis by the acuA and acuC gene products. In addition, both in vivo and in vitro data presented support the conclusion that the yhdZ gene of B. subtilis encodes a NAD+-dependent protein deacetylase homologous to the yeast Sir2 protein (also known as sirtuin). On the basis of this new information, a change in gene nomenclature, from yhdZ to srtN (for sirtuin), is proposed to reflect the activity associated with the YdhZ protein. In vivo control of B. subtilis AcsA function required the combined activities of AcuC and SrtN. Inactivation of acuC or srtN resulted in slower growth and cell yield under low-acetate conditions than those of the wild-type strain, and the acuC srtN strain grew under low-acetate conditions as poorly as the acsA strain. Our interpretation of the latter result was that both deacetylases (AcuC and SrtN) are needed to maintain AcsA as active (i.e., deacetylated) so the cell can grow with low concentrations of acetate. Growth of an acuA acuC srtN strain on acetate was improved over that of the acuA + acuC srtN strain, indicating that the AcuA acetyltransferase enzyme modifies (i.e., inactivates) AcsA in vivo, a result consistent with previously reported in vitro evidence that AcsA is a substrate of AcuA.


2018 ◽  
Vol 234 (7) ◽  
pp. 11951-11959 ◽  
Author(s):  
Fangsheng Fu ◽  
Siyuan Shao ◽  
Ziyi Wang ◽  
Fangming Song ◽  
Xixi Lin ◽  
...  

Parasitology ◽  
1993 ◽  
Vol 106 (1) ◽  
pp. 31-37 ◽  
Author(s):  
J. Tachezy ◽  
J. Kulda ◽  
E. Tomková

SUMMARYAerobic resistance of Trichomonas vaginalis to metronidazole was induced in vitro by anaerobic cultivation of drug-susceptible trichomonads with low concentrations of the drug (2–3 μg/ml) for 50 days. Minimal lethal concentrations (MLC) for metronidazole of the resistant derivatives were high in aerobic susceptibility assays (MLC = 216–261.5 μg/ml) but low in anaerobic assays (MLC = 4.2–6.3 μg/ml), surpassing MLC values of their parent strain approximately 50-fold and 3-fold under aerobiosis and anaerobiosis, respectively. Sensitivity to metronidazole under anaerobic conditions and activity of the hydrogenosomal enzyme pyruvate: ferredoxin oxidoreductase indicated that the resistance was of the aerobic type. Dependence of the resistance manifestation on O2 was further confirmed by susceptibility assays in vitro performed in defined gas mixtures of different oxygen content (1–20%). Five percent concentration of O2 proved to be the threshold required for resistance demonstration and the MLC values further increased with increasing O2 concentrations. The in vitro-induced resistance was also demonstrated in vivo by subcutaneous mouse assay. The dose of metronidazole needed to cure 50% of infected mice (DC50) was 223 mg/kg × 3 for resistant derivative MR-3a but 6.6 mg/kg × 3 only for its drug-susceptible parent strain. The metronidazole – resistant strains developed in this study correspond by their properties to drug-resistant T. vaginalis strains isolated from patients refractory to treatment, and promise to be a useful tool in the study of 5-nitroimidazole aerobic resistance.


2007 ◽  
Vol 97 (3) ◽  
pp. 2148-2158 ◽  
Author(s):  
Nathan P. Cramer ◽  
Ying Li ◽  
Asaf Keller

Using the rat vibrissa system, we provide evidence for a novel mechanism for the generation of movement. Like other central pattern generators (CPGs) that underlie many movements, the rhythm generator for whisking can operate without cortical inputs or sensory feedback. However, unlike conventional mammalian CPGs, vibrissa motoneurons (vMNs) actively participate in the rhythmogenesis by converting tonic serotonergic inputs into the patterned motor output responsible for movement of the vibrissae. We find that, in vitro, a serotonin receptor agonist, α-Me-5HT, facilitates a persistent inward current (PIC) and evokes rhythmic firing in vMNs. Within each motoneuron, increasing the concentration of α-Me-5HT significantly increases the both the magnitude of the PIC and the motoneuron's firing rate. Riluzole, which selectively suppresses the Na+ component of PICs at low concentrations, causes a reduction in both of these phenomena. The magnitude of this reduction is directly correlated with the concentration of riluzole. The joint effects of riluzole on PIC magnitude and firing rate in vMNs suggest that the two are causally related. In vivo we find that the tonic activity of putative serotonergic premotoneurons is positively correlated with the frequency of whisking evoked by cortical stimulation. Taken together, these results support the hypothesized novel mammalian mechanism for movement generation in the vibrissa motor system where vMNs actively participate in the rhythmogenesis in response to tonic drive from serotonergic premotoneurons.


Sign in / Sign up

Export Citation Format

Share Document