scholarly journals Reduced NLRP3 Gene Expression Limits the IL-1β Cleavage via Inflammasome in Monocytes from Severely Injured Trauma Patients

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Shinwan Kany ◽  
Johann-Philipp Horstmann ◽  
Ramona Sturm ◽  
Katharina Mörs ◽  
Borna Relja

Objective. Traumatic injury or severe surgery leads to a profound immune response with a diminished functionality of monocytes and subsequently their IL-1β release. IL-1β plays an important role in host immunity and protection against infections. Its biological activation via IL-1β-precursor processing requires the transcription of inflammasome components and their activation. Deregulated activity of NOD-like receptor inflammasomes (NLR) like NLRP3 that leads to the maturation of IL-1β has been described in various diseases. While the role of other inflammasomes has been studied in monocytes, nothing is known about NLRP3 inflammasome after a traumatic injury. Here, the role of the NLRP3 inflammasome in impaired monocyte functionality after a traumatic injury was analyzed. Measurements and Main Results. Ex vivo-in vitro stimulation of isolated CD14+ monocytes with lipopolysaccharide (LPS) showed a significantly higher IL-1β secretion in healthy volunteers (HV) compared to trauma patients (TP) after admission. Reduced IL-1β secretion was paralleled by significantly lowered gene expression of NLRP3 in monocytes from TP compared to those of HV. Transfection of monocytes with NLRP3-encoding plasmid recovered the functionality of monocytes from TP regarding the IL-1β secretion. Conclusions. This study demonstrates that CD14+ monocytes from TP are significantly diminished in their function and that the presence of NLRP3 components is necessary in recovering the ability of monocytes to produce active IL-1β. This recovery of the NLRP3 inflammasome in monocytes may imply a new target for treatment and therapy of immune suppression after severe injury.

1996 ◽  
Vol 271 (2) ◽  
pp. G275-G281 ◽  
Author(s):  
P. Montuschi ◽  
G. Tringali ◽  
A. Mirtella ◽  
L. Parente ◽  
E. Ragazzoni ◽  
...  

Interleukin-1 (IL-1) is known to regulate gastric functions via a central action at the hypothalamic level, and it has also been shown that this cytokine can directly modulate rat gastric motility. This study was conducted to determine whether IL-1 beta is produced and released by rat gastric fundi in vitro. IL-1 beta immunoreactivity was released in measurable amounts from explanted rat gastric tissue. This release was not affected by electrical stimulation of the gastric strips or by agents that induce IL-1 biosynthesis. It could be inhibited only by the glucocorticoid dexamethasone. Ex vivo experiments confirmed the inhibitory role of glucocorticoids and showed that IL-1 beta release can be inhibited by agents that reduce gastric acid secretion, suggesting that the latter might stimulate IL-1 beta synthesis and release. In light of the well-established gastroprotection exerted by IL-1, H(+)-induced IL-1 beta release might serve as a protection against mucosal injuries caused by acid secretion, and the inhibition of this release by glucocorticoids might be involved in the pathogenesis of gastric damage associated with severe stress or steroid therapy.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3334-3334
Author(s):  
María Luz Morales ◽  
Roberto Garcia-Vicente ◽  
Alba Rodríguez García ◽  
Noemí Álvarez Sánchez-Redondo ◽  
Alejandra Ortiz-Ruiz ◽  
...  

Abstract Introduction. Despite the recent approval of several drugs for the treatment of AML, the 3 + 7 regimens remain as the standard of care for many patients. Its lack of efficacy represents the main cause of death, since only 10% of patients who show refractoriness/relapse overcome the disease. Therefore, there is still an urgent need for seeking more effective treatments. Aberrant RNA splicing has been described in AML, but its relevance as mechanism of resistance is unclear. In this study, we deepen the mechanism of resistance to cytarabine and the role of splicing factors SR proteins, involved in the spliceosome functionality, to seek more effective therapies for AML. Methods. First, the expression levels of genes encoding SR proteins were analyzed with the GEPIA2 platform, comparing the data from the TCGA-LAML (AML patients) and GTEx (healthy) projects. Then, the gene expression of one of the most overexpressed genes, SRRM2, was validated by qPCR in samples of AML patients compared to controls and other myeloid disorders, as MDS and MPN (n=54). The resistance-associated phospho-proteomic profile was analyzed by LC-MS / MS after IMAC enrichment in paired samples from 3 AML patients. The expression of SR proteins and their phosphorylated forms was studied by immunohistochemistry (IHC) before and after resistance in paired bone marrow samples from 3 AML patients. We also analyzed by IHC the prognostic value of phospho-SR proteins at the moment of diagnosis in 64 patients with different responses to cytarabine (non-responders and responders). In order to validate an altered function of SR proteins, the analysis of the differential use of exons of paired samples from 25 AML patients was performed using RNAseq. Then, we evaluated in vitro the efficacy of some splicing modulators, and its combination with other approved drugs, in cytarabine-sensitive and resistant cells. The combination of H3B-8800, a spliceosome inhibitor, with venetoclax was tested in ex vivo samples from AML patients and healthy donors. Results. We found that the gene expression levels of SRSF9, SRSF12 and SRRM2 were altered in AML (Fig 1A-B). Immunohistochemical studies revealed that, although at the protein level no differences were found in SR proteins expression between the diagnosis and relapse moment, an increase in the levels of phosphorylated SR proteins was associated at the time of relapse (Fig 1C). Indeed, the phosphorylation levels of SRRM2, among other SR proteins, were found to be increased during cytarabine resistance by phospho-proteomics (Fig 1D). Moreover, the phosphorylation levels of SR proteins predicted the response to cytarabine treatment, as AML patients that were non-responders presented significantly higher levels compared to responders ones (Fig 1E). The observed alterations in the phosphorylation of these proteins were correlated with a differential use of exons in some of their known targets, when comparing the diagnostic condition and drug resistance moment. Based on this evidence, the efficacy of combining different therapeutic options was evaluated in vitro using sensitive or cytarabine-resistant cell models (Fig 1F). The combination of H3B-8800 together with venetoclax was the most effective in vitro and also presented synergic effects ex vivo in AML patients samples (Fig 1G). Furthermore, this combination did not show toxicity over healthy hematopoietic progenitors, since the same doses that were effective in AML did not show toxicity in a healthy context (Fig 1H). Conclusions. The results of this work shed light on the role of the RNA splicing process in cytarabine resistance in AML. Interestingly, the high levels of phosphorylated splicing factors SR proteins at diagnosis in refractory patients, would allow us to use them as a predictive biomarker of response to cytarabine treatment. Otherwise, due to the need to search effective and safe treatments in this disease, we have found that the combination of splicing inhibitors with venetoclax should be a good strategy for the treatment of AML. Acknowledgment. This work has been possible thanks to the granting of the project PI19/01518 from the Carlos III Health Institute and the CRIS Against Cancer Foundation. ML.M. enjoys a research grant from the Spanish Society of Hematology and Hemotherapy and R.GV. a FPU grant from the Ministry of Science, Innovation and Universities. Figure 1 Figure 1. Disclosures Sanchez: Altum sequencing: Current Employment. Ayala: Incyte Corporation: Membership on an entity's Board of Directors or advisory committees; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees; Astellas: Honoraria; Celgene: Honoraria.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4375-4375
Author(s):  
Aristea Batsali ◽  
Charalampos Pontikoglou ◽  
Emmanuel Agrafiotis ◽  
Elisavet Kouvidi ◽  
Irene Mavroudi ◽  
...  

Abstract We have previously shown (Batsali A et al., Blood 2013:122, 1212) that ex vivo expanded human mesenchymal stem/stromal cells (MSCs) derived from the Wharton's jelly (WJ) of the umbilical cord exhibit increased proliferative capacity and reduced potential to differentiate in vitro to adipocytes and osteocytes, compared to bone marrow (BM) derived-MSCs. Provided that the WNT-pathways are involved in proliferation and differentiation of BM-MSCs, we assumed that the aforementioned findings might be attributed, at least in part, to aberrant WNT-signaling in WJ-MSCs. In support of this hypothesis, we found that gene expression of the Wnt antagonist sFRP4, a promoter of adipogenesis in human adipose tissue-derived MSCs, was significantly down-regulated in WJ-MSCs and that mRNA levels of WNT-induced secreted protein-1, (WISP-1), a regulator of osteogenesis in BM-MSCs, were also significantly reduced in WJ-MSCs. These observations imply a connection between these WNT-associated molecules and the biological properties of WJ-MSCs, which requires, however, further investigation. The present study was undertaken so as to explore the effects of WISP-1 and sFRP4 in growth and differentiation of ex-vivo expanded WJ-MSCs. MSCs were isolated from consenting healthy donors’ BM aspirates (n=5) and from the WJ of full-term neonates (n=5) after written informed consent of the family. MSCs were in vitro expanded, re-seeded for a total of 4 passages (P) and phenotypically characterized by flow cytometry at P3. WJ-MSCs were grown in the absence or presence of rhWISP-1 or rhsFRP4 and cell proliferation was assessed by a methyl-triazolyl-tetrazolium (MTT)-assay. In addition, WJ-MSCs were induced to differentiate in vitro to osteoblasts and adipocytes, in the absence or presence of rhWISP-1 or rhsFRP4 respectively. Differentiation was quantified by cytochemical stains and by the expression of adipocyte- and osteocyte-specific genes by real time RT-PCR. Relative gene expression was calculated by the ΔCt method. The expression of WISP-1 and sFRP4 by non-differentiated WJ- and BM-MSCs as well as by WJ-MSCs during osteogenesis and adipogenesis, respectively, was also evaluated by real time RT-PCR. Culture-expanded cells from both WJ and BM displayed typical morphological and immunophenotypic MSC characteristics and were able to differentiate into osteoblasts and adipocytes. In line with our previous work WISP-1 and sFRP4 mRNA were significantly decreased in WJ-MSCs, compared to BM-MSCs. To explore the role of WISP-1 in WJ-MSCs' growth we cultured cells in the presence of 50 ng/ml or 100 ng/ml rhWISP1 and assessed cell proliferation at multiple time points, throughout a 14-day culture. WISP-1 treatment did not lead to any significant effect in cell numbers. Next, we investigated the time course of WISP1 gene expression during osteoinduction. In all samples, WISP1 mRNA levels increased during osteogenesis. As compared to day0 (exposure to osteogenic medium), the increase in gene expression reached statistical significance at days 7 and 14. Furthermore, WISP-1 gene expression was significantly higher at day 14, compared to day 7. To investigate the functional effects of WISP1 on the osteoblastic differentiation of WJ-MSCs, cells were cultured for 7 days in osteogenic medium supplemented with 50ng/ml rh-WISP1. A significant increase in the expression of RUNX2 and ALP was detected, compared to non-treated cells. To investigate the impact of sFRP4 in WJ-MSC's proliferation we exposed cells to 20nM rhsFRP4 for 14 days. Live cell numbers, at various time points, were significantly reduced in treated cells. Regarding the time course of sFRP4 expression during adipogenic differentiation, sFRP4 mRNA levels increased during adipogenesis reaching statistical significance at days7 and 14, as compared to day0. In addition, sFRP4 gene expression was significantly higher at day 14 as compared to day 7. Finally, when cells underwent adipogenic differentiation in the presence of rhSFRP4, a significant increase in PPARG and CEBPA mRNA levels was detected at day 14, as compared to non-treated cells Collectively, our results suggest that WISP-1 and sFRP4 may be actively implicated in proliferation and differentiation of WJ-MSCs. The functional role of these WNT-related molecules in the biology of WJ-MSCs requires deeper understanding, in view of the growing interest for the use of WJ-MSCs in cell-based therapies. Disclosures No relevant conflicts of interest to declare.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
David Heftrig ◽  
Ramona Sturm ◽  
Elsie Oppermann ◽  
Kerstin Kontradowitz ◽  
Katrin Jurida ◽  
...  

Objective. Trauma patients (TP) frequently develop an imbalanced immune response that often causes infectious postinjury complications. Monocytes show a diminished capability of both producing proinflammatory cytokines and antigen presentation after trauma. TLR2, TLR4, and TLR9 recognize pathogens and subsequently activate monocytes. While there are conflictive data about TLR2 and TLR4 expression after trauma, no studies about the expression of TLR2, TLR4, TLR9, and HLA-DR on monocytes from TP after their secondary ex vivo-in vitro “hit” have been reported.Methods/Results. Ex vivo-in vitro lipopolysaccharide- (LPS-) stimulated blood from TP showed diminished interleukin- (IL-) 1β-release in TP for five postinjury days compared to healthy volunteers (HV). The recovery was observed at day 5. In parallel, monocytes from TP showed an impaired capability of TLR2, TLR4, and TLR9 expression after secondary stimulation compared to HV, while the measurement of unstimulated samples showed significant reduction of TLR4 and TLR9 at ED. Furthermore, HLA-DR decreased after trauma and was even more profound by stimulation of monocytes. Ratio of monocytes to leukocytes was significantly increased at days 6 and 7 after trauma compared to HV.Conclusion. Impaired expression of TLRs and HLA-DR in acute inflammatory conditions may be responsible for the well-described monocyte paralysis after severe trauma.


2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


1985 ◽  
Vol 54 (04) ◽  
pp. 799-803 ◽  
Author(s):  
José Luís Pérez-Requejo ◽  
Justo Aznar ◽  
M Teresa Santos ◽  
Juana Vallés

SummaryIt is shown that the supernatant of unstirred whole blood at 37° C, stimulated by 1 μg/ml of collagen for 10 sec, produces a rapid generation of pro and antiaggregatory compounds with a final proaggregatory activity which can be detected for more than 60 min on a platelet rich plasma (PRP) by turbidometric aggregometry. A reversible aggregation wave that we have called BASIC wave (for Blood Aggregation Stimulatory and Inhibitory Compounds) is recorded. The collagen stimulation of unstirred PRP produces a similar but smaller BASIC wave. BASIC’s intensity increases if erythrocytes are added to PRP but decreases if white blood cells are added instead. Aspirin abolishes “ex vivo” the ability of whole blood and PRP to generate BASIC waves and dipyridamole “in vitro” significantly reduces BASIC’s intensity in whole blood in every tested sample, but shows little effect in PRP.


2019 ◽  
Vol 20 (11) ◽  
pp. 920-933 ◽  
Author(s):  
Lucía Gato-Calvo ◽  
Tamara Hermida-Gómez ◽  
Cristina R. Romero ◽  
Elena F. Burguera ◽  
Francisco J. Blanco

Background: Platelet Rich Plasma (PRP) has recently emerged as a potential treatment for osteoarthritis (OA), but composition heterogeneity hampers comparison among studies, with the result that definite conclusions on its efficacy have not been reached. Objective: 1) To develop a novel methodology to prepare a series of standardized PRP releasates (PRP-Rs) with known absolute platelet concentrations, and 2) To evaluate the influence of this standardization parameter on the anti-inflammatory properties of these PRP-Rs in an in vitro and an ex vivo model of OA. Methods: A series of PRPs was prepared using the absolute platelet concentration as the standardization parameter. Doses of platelets ranged from 0% (platelet poor plasma, PPP) to 1.5·105 platelets/µl. PRPs were then activated with CaCl2 to obtain releasates (PRP-R). Chondrocytes were stimulated with 10% of each PRP-R in serum-free culture medium for 72 h to assess proliferation and viability. Cells were co-stimulated with interleukin (IL)-1β (5 ng/ml) and 10% of each PRP-R for 48 h to determine the effects on gene expression, secretion and intra-cellular content of common markers associated with inflammation, catabolism and oxidative stress in OA. OA cartilage explants were co-stimulated with IL-1β (5 ng/ml) and 10% of either PRP-R with 0.75·105 platelets/µl or PRP-R with 1.5·105 platelets/µl for 21 days to assess matrix inflammatory degradation. Results: Chondrocyte viability was not affected, and proliferation was dose-dependently increased. The gene expression of all pro-inflammatory mediators was significantly and dose-independently reduced, except for that of IL-1β and IL-8. Immunoblotting corroborated this effect for inducible NO synthase (NOS2). Secreted matrix metalloproteinase-13 (MMP-13) was reduced to almost basal levels by the PRP-R from PPP. Increasing platelet dosage led to progressive loss to this anti-catabolic ability. Safranin O and toluidine blue stains supported the beneficial effect of low platelet dosage on cartilage matrix preservation. Conclusion: We have developed a methodology to prepare PRP releasates using the absolute platelet concentration as the standardization parameter. Using this approach, the composition of the resulting PRP derived product is independent of the donor initial basal platelet count, thereby allowing the evaluation of its effects objectively and reproducibly. In our OA models, PRP-Rs showed antiinflammatory, anti-oxidant and anti-catabolic properties. Platelet enrichment could favor chondrocyte proliferation but is not necessary for the above effects and could even be counter-productive.


Author(s):  
Lina Y Alkaissi ◽  
Martin E Winberg ◽  
Stéphanie DS Heil ◽  
Staffan Haapaniemi ◽  
Pär Myrelid ◽  
...  

Abstract Background The first visible signs of Crohn’s disease (CD) are microscopic erosions over the follicle-associated epithelium (FAE). The aim of the study was to investigate the effects of human α-defensin 5 (HD5) on adherent-invasive Escherichia coli LF82 translocation and HD5 secretion after LF82 exposure in an in vitro model of human FAE and in human FAE ex vivo. Methods An in vitro FAE-model was set up by the coculture of Raji B cells and Caco-2-cl1 cells. Ileal FAE from patients with CD and controls were mounted in Ussing chambers. The effect of HD5 on LF82 translocation was studied by LF82 exposure to the cells or tissues with or without incubation with HD5. The HD5 secretion was measured in human FAE exposed to LF82 or Salmonella typhimurium. The HD5 levels were evaluated by immunofluorescence, immunoblotting, and ELISA. Results There was an increased LF82 translocation across the FAE-model compared with Caco-2-cl1 (P < 0.05). Incubation of cell/tissues with HD5 before LF82 exposure reduced bacterial passage in both models. Human FAE showed increased LF82 translocation in CD compared with controls and attenuated passage after incubation with sublethal HD5 in both CD and controls (P < 0.05). LF82 exposure resulted in a lower HD5 secretion in CD FAE compared with controls (P < 0.05), whereas Salmonella exposure caused equal secretion on CD and controls. There were significantly lower HD5 levels in CD tissues compared with controls. Conclusions Sublethal HD5 reduces the ability of LF82 to translocate through FAE. The HD5 is secreted less in CD in response to LF82, despite a normal response to Salmonella. This further implicates the integrated role of antimicrobial factors and barrier function in CD pathogenesis.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Federico Tinarelli ◽  
Elena Ivanova ◽  
Ilaria Colombi ◽  
Erica Barini ◽  
Edoardo Balzani ◽  
...  

Abstract Background DNA methylation has emerged as an important epigenetic regulator of brain processes, including circadian rhythms. However, how DNA methylation intervenes between environmental signals, such as light entrainment, and the transcriptional and translational molecular mechanisms of the cellular clock is currently unknown. Here, we studied the after-hours mice, which have a point mutation in the Fbxl3 gene and a lengthened circadian period. Methods In this study, we used a combination of in vivo, ex vivo and in vitro approaches. We measured retinal responses in Afh animals and we have run reduced representation bisulphite sequencing (RRBS), pyrosequencing and gene expression analysis in a variety of brain tissues ex vivo. In vitro, we used primary neuronal cultures combined to micro electrode array (MEA) technology and gene expression. Results We observed functional impairments in mutant neuronal networks, and a reduction in the retinal responses to light-dependent stimuli. We detected abnormalities in the expression of photoreceptive melanopsin (OPN4). Furthermore, we identified alterations in the DNA methylation pathways throughout the retinohypothalamic tract terminals and links between the transcription factor Rev-Erbα and Fbxl3. Conclusions The results of this study, primarily represent a contribution towards an understanding of electrophysiological and molecular phenotypic responses to external stimuli in the Afh model. Moreover, as DNA methylation has recently emerged as a new regulator of neuronal networks with important consequences for circadian behaviour, we discuss the impact of the Afh mutation on the epigenetic landscape of circadian biology.


Sign in / Sign up

Export Citation Format

Share Document