scholarly journals Numerical Analysis of the Degradation Characteristics of Bearing Capacity of a Corroded Reinforced Concrete Beam

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Guifeng Zhao ◽  
Jiankun Xu ◽  
Yaoliang Li ◽  
Meng Zhang

The static load carrying capacity of a noncorroded reinforced concrete (RC) simply supported beam is numerically simulated by ABAQUS software, and the reliability of the finite element model is verified by comparing with the test results. Based on the above model, the macroscopic mechanical properties of the beam under different degrees of corrosion are calculated. In the calculation, the degradation of the bond-slip performance and mechanical properties of corroded rebars and the coupling effect on the bearing capacity and ductility degradation of the beams are considered. The results show that, under conditions of slight corrosion, the degradation of bond-slip performance between the rebar and concrete has no significant influence on the bearing capacity of the beam, while the degradation of the corroded rebar had a significant effect. Under moderate and severe corrosion conditions, the bearing capacity and ductility degradation caused by bond-slip are dominant in the mechanical property degradation of the beam. Overall, the macroscopic mechanical properties of the corroded beam are influenced by the coupling effect of bond-slip degradation and the mechanical property degradation of the rebar. With the increase in the corrosion rate, the bearing capacity and ductility of the beam are decreased, and its brittleness is increased.

2000 ◽  
Vol 27 (3) ◽  
pp. 490-505 ◽  
Author(s):  
Mostafa Elmorsi ◽  
M Reza Kianoush ◽  
W K Tso

A new finite element model for reinforced concrete beam-column joints is proposed. The model considers the effects of bond-slip and shear deformations in the joint panel region. The problems associated with modeling bond-slip of anchored reinforcing bars are discussed. The proposed bond-slip model is examined at the element level by comparing its predictions with other analytical and experimental results. The ability of the model to simulate bond deterioration and eventual pullout of anchored reinforcing bars under severe cyclic excitation is demonstrated. This model is incorporated into the global beam-column joint element. Further comparisons are made between the predictions of the proposed beam-column joint model and other analytical and experimental results under reversed cyclic loading to show the validity of the model to describe the bond-slip behavior of the joints.Key words: bond, bond-slip, finite element, beam-column, reinforced concrete, cyclic.


2020 ◽  
Vol 6 (1) ◽  
pp. 171
Author(s):  
Jen Hua Ling ◽  
Lin Li Chan ◽  
Wen Kam Leong ◽  
How Teck Sia

The self-weight of a reinforced concrete beam contributes to the permanent loads of a structure. This can be reduced by creating a longitudinal void along the beam so that it will not affect the performance of the beam. In addition, this process can reduce the amount of building cost. Therefore, a finite element model was developed in this study with the aid of a computer program, Ansys, to investigate the behavior of the hollow beam. The model was tested for reliability by comparing the predicted results with those obtained from the experiment in terms of the load-displacement responses, mechanical properties, and parametric responses. The result showed that the reliability of the model was questionable. The main cause of the non-reliability was the inaccurate prediction of the beam deflection by the model. The poor prediction of beam deflection led to significant variations of relevant mechanical properties including stiffness, deflection, and ductility. For beam deflection, only 1/3 of the specimens were correctly predicted with a reliability of 36% while the strength properties were discovered to have higher values as observed in the yield and the ultimate strengths with 73% and 64% respectively. However, both the model and experimental results showed the hollow beam was relatively effective when the diameter of the longitudinal void was 1/3 times the beam width and placed at the neutral axis. For the evaluation to improve the reliability, some revision including the properties of the materials, boundary conditions of the beam support, bonding conditions between different materials, and meshing shape and size suppose to be applied to the model. 


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Huang Tang ◽  
Jianxin Peng ◽  
Linfa Xiao ◽  
Xinhua Liu ◽  
Jianren Zhang

This paper proposes 3D nonlinear finite element (FE) models to predict the response of corroded reinforced concrete (RC) beam strengthened using a steel plate. Five FE models are developed based on the tests carried out by the authors in a previous investigation, in which three models are used to simulate the corroded RC beams with different schemes. The FE models use the coupled damaged-plasticity constitutive law for concrete in tension and compression and consider the bond-slip between the corroded tensile steel bar and concrete. The cohesive element is also used to model the cohesive bond between the steel plate and concrete. The FE results of load-deflection and the crack distribution are compared with the test data. The FE results are consistent with the test results. The influence of the thickness of the steel plate, the thickness, and location of the U-shaped steel strip on the bearing capacity of the strengthened corroded beam is analyzed through FE models. The results show that the thickness of the steel plate on the bottom surface should not exceed 4 mm for the flexure-strengthened and combined strengthened beams with a 10% corrosion rate. It is most reasonable to improve the bearing capacity using the 3 mm and 2 mm of thick U-shaped steel strips for the shear-strengthened and combined strengthened beams, respectively. The most reasonable location of the U-shaped steel plate is at the end of the steel plate for beams with a 10% corrosion rate.


2017 ◽  
Vol 3 (2) ◽  
pp. 105
Author(s):  
P. J. Jaua Junior ◽  
Clotilda Petrus ◽  
J.D. Nyuin

The significant increment of waste concrete in recent years that is happening worldwide has a tremendous consequence to the environment. Recycling concrete wastes will reduce the amount of waste as well as save natural resources, thus help promote green and sustainable development. This study presents an experimental investigation dealing with the development of green concrete using recycled concrete waste (RCWA) as coarse aggregate replacement materials. The mechanical properties of reinforced concrete (RC) beams in terms of its compressive and flexural strengths were determined. The main parameter considered is the percentage of RCWA in the concrete design of RC beams that ranges from 0% to 50%.  From the test results, it was observed that the flexural strength and the compression strength decreased as the percentage of recycled concrete waste aggregate used increased. Generally, the flexural strength of RC beam with RCWA can be 5% to 12.4% lower than that of conventional concrete made with natural course aggregate.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Qingfu Li ◽  
Wei Guo ◽  
Chenhui Liu ◽  
Yihang Kuang ◽  
Huitao Geng

In this paper, the flexural characteristics of stainless steel (SS) reinforced concrete beams are studied and analyzed. We mainly focus on their crack mode, failure mode, load-deflection curve, and bearing capacity. Six beams with test parameters, including the diameter of reinforcement, the type of the reinforcement, and the stirrup spacing, were tested in 4-point bending. The test results indicate that the failure mode of SS reinforced concrete beam can be divided into three stages: elastic stage, cracking stage, and failure stage. The midspan section deformation of SS reinforced concrete beam conforms to the assumption of plane section. Under the same reinforcement condition, the normal section and the oblique section bearing capacities of the SS reinforced concrete beams are significantly higher than those of the ordinary reinforced concrete beams. In addition, the prediction of cracking moment and bearing capacity calculated by ACI 318-14 and GB 50010-2010 was also evaluated. The calculation results of the two codes were safe and conservative, and GB 50010-2010 provided more accurate prediction of cracking moments. Furthermore, to verify the reliability of the test results, finite element models were established and the analytical results corroborated well with the test results.


2013 ◽  
Vol 351-352 ◽  
pp. 95-98
Author(s):  
Zhen Bao Li ◽  
Fen Fen Sun ◽  
Er Wei Guo ◽  
Wen Jing Wang

Based on test results of two full-scale reinforced concrete beam-column joints, carrying capacities of core areas of the joints were calculated and modified based on the strut-and-tie model. The results indicate that the capacities calculated with h-D-regions is smaller than those with h/2-D-regions, and the calculated results with h/2-D-regions agree better with the test results.


2011 ◽  
Vol 243-249 ◽  
pp. 1461-1465
Author(s):  
Chuan Min Zhang ◽  
Chao He Chen ◽  
Ye Fan Chen

The paper makes an analysis of the reinforced concrete beams with exterior FRP Shell in Finite Element, and compares it with the test results. The results show that, by means of this model, mechanical properties of reinforced concrete beams with exterior FRP shell can be predicted better. However, the larger the load, the larger deviation between calculated values and test values. Hence, if more accurate calculation is required, issues of contact interface between the reinforced concrete beams and the FRP shell should be taken into consideration.


2020 ◽  
Vol 4 (4) ◽  
pp. 182
Author(s):  
Luciano Ombres ◽  
Salvatore Verre

In the paper, the bond between a composite strengthening system consisting of steel textiles embedded into an inorganic matrix (steel reinforced grout, SRG) and the concrete substrate, is investigated. An experimental investigation was carried out on medium density SRG specimens; direct shear tests were conducted on 20 specimens to analyze the effect of the bond length, and the age of the composite strip on the SRG-to-concrete bond behavior. In particular, the tests were conducted considering five bond length (100, 200, 250, 330, and 450 mm), and the composite strip’s age 14th, 21st, and 28th day after the bonding. Test results in the form of peak load, failure modes and, bond-slip diagrams were presented and discussed. A finite element model developed through commercial software to replicate the behavior of SRG strips, is also proposed. The effectiveness of the proposed numerical model was validated by the comparison between its predictions and experimental results.


2011 ◽  
Vol 243-249 ◽  
pp. 1528-1535
Author(s):  
Yu Zhao ◽  
Yong Jun Zhou ◽  
Jing Sun ◽  
Jin Tao Tang ◽  
Xu Li

Cable-stayed self-anchored suspension composed bridges have novel structures and aesthetic appearance with complex system and difficulty for design and construction. In order to acquire a better knowledge of the load-carrying capability of this type of bridges, based on a real bridge and the theory of abnormal similarity, a full-bridge scaled down(1:20) test model was built to simulate the whole process of construction. The test results were preferably fit the theoretical calculation value. It can be seen that the design of the bridge was reasonable, and the accuracy of the calculation of finite element model was verified at the same time. The test and the related results can be used as the reference for the test and design of the similar bridges.


2020 ◽  
Vol 23 (9) ◽  
pp. 1934-1947
Author(s):  
Dapeng Chen ◽  
Li Chen ◽  
Qin Fang ◽  
Yuzhou Zheng ◽  
Teng Pan

The bending behavior of reinforced concrete beams under uniform pressure is critical for the research of the blast-resistance performance of structural components under explosive loads. In this study, a bending test of five reinforced concrete beams with the dimensions of 200 mm (width) × 200 mm (depth) × 2500 mm (length) under uniform load produced by a specific cylinder-shaped rubber bag filled with air or water was conducted to investigate their flexural performances. An air bag load was applied to three of the reinforced concrete beams, a water bag load was applied to one reinforced concrete beam, and the remainder beam was subjected to the 4-point bending load. The experimental results highlighted that the air bag and water bag loading methods can be used to effectively apply uniform loads to reinforced concrete beams. Moreover, the stiffness of the air bag was improved by 123% in accordance with the initial pressure increases from 0.15 to 0.45 MPa. In addition, a finite element model of the test loading system was established using ABAQUS/Standard software. Moreover, the critical factors of the air bag loading method were analyzed using the numerical model. The calculated results were found to be in good agreement with the test data. The established finite element model can therefore be used to accurately simulate the action performances of the uniform loading technique using rubber bags filled with air or water.


Sign in / Sign up

Export Citation Format

Share Document