scholarly journals Characterization of Esthetic Orthodontic Wires Made from Glass-Fiber-Reinforced Thermoplastic Containing High-Strength, Small-Diameter Glass Fibers

2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Yasuhiro Tanimoto ◽  
Toshihiro Inami ◽  
Masaru Yamaguchi ◽  
Kazutaka Kasai ◽  
Norio Hirayama ◽  
...  

In this work, we investigated the properties of a glass-fiber-reinforced thermoplastic (GFRTP) composed of small-diameter (ϕ = 5 μm), high-strength glass (T-glass) fibers and polycarbonate for esthetic orthodontic wires formed using pultrusion. After fabricating such GFRTP round wires, the effects of varying fiber diameter (5 to 13 mm) on the mechanical properties, durabilities, and color stabilities were evaluated. The results showed that the mechanical properties of GFRTPs tend to increase with decreasing fiber diameter. Additionally, it was confirmed that the present GFRTP wires containing T-glass fibers have better flexural properties than previously reported GFRTP wires containing E-glass fibers. Meanwhile, thermocycling did not significantly affect the flexural properties of the GFRTP wires. Furthermore, the GFRTP wires showed color changes lower than the acceptable threshold level for color differences on immersion in coffee. From these results obtained in the present work, the GFRTP wires containing high-strength glass fibers have excellent properties for orthodontic applications. Our findings suggest that the GFRTPs might be applied to all phases of orthodontic treatment because their properties can be tuned by changing the fiber properties such as fiber type and diameter.

e-Polymers ◽  
2017 ◽  
Vol 17 (2) ◽  
pp. 159-166 ◽  
Author(s):  
Hyeong Min Yoo ◽  
Dong-Jun Kwon ◽  
Joung-Man Park ◽  
Sang Hyuk Yum ◽  
Woo Il Lee

AbstractA lab scale structural reaction injection molding (S-RIM) piece of equipment was designed and used to fabricate glass fiber reinforced polydicyclopentadiene (p-DCPD) composites for three different fiber contents. In order to obtain information regarding the optimal process temperature (>80°C) and the curing time (<30 s), differential scanning calorimetry (DSC) was used to investigate the curing behavior of DCPD resin under isothermal conditions. Further, a norbornene-based silane treatment was used to improve the interfacial adhesion between the glass fibers and DCPD as confirmed by the micro-droplet pull-out test and scanning electron microscopy (SEM). Fabrication of glass fiber/p-DCPD composites with improved mechanical properties was carried out based on the optimized process conditions and surface treatment of glass fiber.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
S. Ragunath ◽  
A. N. Shankar ◽  
K. Meena ◽  
B. Guruprasad ◽  
S. Madhu ◽  
...  

The aim of this research work was to develop the optimal mechanical properties, namely, tensile strength, flexural strength, and impact strength of sisal and glass fiber-reinforced polymer hybrid composites. The sisal, in the form of short fiber, is randomly used as reinforcements for composite materials, which is rich in cellulose, economical, and easily available as well as glass fibers have low cost and have good mechanical properties. In addition, epoxy resin and hardener were for the fabrication of composites by compression molding. The selected materials are fabricated by compression molding in various concentrations on volume basics. The combination of material compositions is obtained from the design of experiments and optimum parameters determined by the Response Surface Methodology (RSM). From the investigation of mechanical properties, the sisal is the most significant factor and verified by ANOVA techniques. The multiobjective optimal levels of factors are obtained by LINGO analysis.


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1041 ◽  
Author(s):  
Francisco J. Alonso-Montemayor ◽  
Quim Tarrés ◽  
Helena Oliver-Ortega ◽  
F. Xavier Espinach ◽  
Rosa Idalia Narro-Céspedes ◽  
...  

Automotive and industrial design companies have profusely used commodity materials like glass fiber-reinforced polypropylene. These materials show advantageous ratios between cost and mechanical properties, but poor environmental yields. Natural fibers have been tested as replacements of glass fibers, obtaining noticeable tensile strengths, but being unable to reach the strength of glass fiber-reinforced composites. In this paper, polyamide 6 is proposed as a matrix for cellulosic fiber-based composites. A variety of fibers were tensile tested, in order to evaluate the creation of a strong interphase. The results show that, with a bleached hardwood fiber-reinforced polyamide 6 composite, it is possible to obtain tensile strengths higher than glass-fiber-reinforced polyolefin. The obtained composites show the existence of a strong interphase, allowing us to take advantage of the strengthening capabilities of such cellulosic reinforcements. These materials show advantageous mechanical properties, while being recyclable and partially renewable.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2211
Author(s):  
S.M. Sapuan ◽  
H.S. Aulia ◽  
R.A. Ilyas ◽  
A. Atiqah ◽  
T.T. Dele-Afolabi ◽  
...  

This work represents a study to investigate the mechanical properties of longitudinal basalt/woven-glass-fiber-reinforced unsaturated polyester-resin hybrid composites. The hybridization of basalt and glass fiber enhanced the mechanical properties of hybrid composites. The unsaturated polyester resin (UP), basalt (B) and glass fibers (GF) were fabricated using the hand lay-up method in six formulations (UP, GF, B7.5/G22.5, B15/G15, B22.5/G7.5 and B) to produce the composites, respectively. This study showed that the addition of basalt to glass-fiber-reinforced unsaturated polyester resin increased its density, tensile and flexural properties. The tensile strength of the B22.5/G7.5 hybrid composites increased by 213.92 MPa compared to neat UP, which was 8.14 MPa. Scanning electron microscopy analysis was used to observe the fracture mode and fiber pullout of the hybrid composites.


2020 ◽  
Vol 01 (01) ◽  
pp. 06-10 ◽  
Author(s):  
Mahir Asif ◽  
Kazi Adnan Rahman ◽  
Mohammad Omar Faisal ◽  
Md. Shariful Islam

In this paper, mechanical properties of bamboo strip and bamboo strip-glass fiber reinforced hybrid composite were investigated. Composites were manufactured by using hand lay-up technique and bamboo strips were made from locally available bamboo. Four layers of bamboo strip composite were manufactured and in case of hybrid composite, two layers of glass fiber one at the top and the other at the bottom were used with the aim was to observe the effect of adding glass fiber layer on the mechanical properties of bamboo strip composite. Tensile and flexural properties were studied and it was found that adding the glass fiber layer doesn’t have any significant effect on tensile properties but flexural strength and modulus have increased by 22.49 % and 15.02 % respectively.


2012 ◽  
Vol 19 (4) ◽  
pp. 331-338 ◽  
Author(s):  
Christian Hopmann ◽  
Walter Michaeli ◽  
Florian Puch

AbstractPolypropylene composites containing layered silicate and glass fibers are prepared by melt compounding. To investigate the influence of the processing conditions on the mechanical properties and the morphology of short glass fiber-reinforced polypropylene-layered silicate composites, the process parameters are varied while preparing the composites. The processing conditions affect the mechanical properties and the morphology. The investigations suggest that a short glass fiber-reinforced polypropylene-layered silicate composite should be compounded at a maximum barrel temperature of 200°C, a throughput of 30 kg/h at a screw speed of 500 min-1 and a screw configuration, which introduces a large amount of shear energy into the composite. These processing conditions lead to a comparatively high specific mechanical energy input of 206 Wh/kg and to the best set of mechanical properties of the investigated materials. However, the morphology of the investigated short glass fiber-reinforced nanocomposites does not show significant differences and has to be investigated further.


2018 ◽  
Author(s):  
◽  
Saad Ramadhan Ahmed

Selecting materials for harsh or extreme environmental conditions can be a challenge. The combination of a harsh environment, large forces over extended periods and the need for lowest possible cost restricts the choice of materials. One potential material is glass fiber reinforced polymers that are widely used in structural systems as load bearing elements, they are relatively low cost and can be tailored to achieve a range of mechanical properties. This investigation presents the preparation of transparent glass fiber reinforced unsaturated polyester composite and the evaluation of its optical and mechanical properties under extreme conditions of temperature. The polyester resin was reinforced with E-glass fibers to manufacture a composite using the hand layup method. Transparency was achieved by modifying the refractive index of the polyester resin to match that of the glass fibers. This investigation also presents the evaluation of glass fiber reinforced unsaturated polyester under quasi-static tension loading and puncture testing using a drop weight at extreme conditions. The results showed that the reinforced composite had a higher fracture stress and chord modulus at all temperatures ranging from +60 [degree]C to -80 [degree]C as compared to the unreinforced polyester matrix. The unreinforced polyester has a higher stiffness at lower temperatures due to reduced polymer chain mobility and higher clamping pressure of the matrix on the glass fiber reinforcement. The damage created by the impact reduces with decreasing temperatures, while the energy absorb remains constant with temperature.


2009 ◽  
Vol 79-82 ◽  
pp. 275-278
Author(s):  
Hiroyuki Kinoshita ◽  
Koichi Kaizu ◽  
Hiromori Miyagi ◽  
Tokunaga Hitoo ◽  
Kiyohiko Ikeda

Ceramics, Composite Material, GFRP, Clay, Recycling, Bending strength Abstract In this study, as the effective recycling technique for the waste GFRP, the process for the producing the porous glass fiber reinforced ceramics by firing the mixture of the clay and the crushed waste GFRP was proposed. The proposed recycling technique for the waste GFRP enables to produce various ceramics parts by effectively reusing the glass fibers included in the waste GFRP as well as to dispose injurious GFRP radically. By changing the mixing ratio of the waste GFRP and clay, and by firing the mixture at some temperatures, several kinds of ceramics specimens (tiles) were produced. The microstructure of each specimen was observed using the SEM and the microscope, and then water absorption and the bending strength of the specimens were examined in detail by comparison with those of specimens without the glass fiber. From those results, it was confirmed that the high-strength porous glass fiber reinforced ceramics could be produced by our proposed process.


2018 ◽  
Vol 53 (2) ◽  
pp. 143-154 ◽  
Author(s):  
Ahmad Rafiq ◽  
Necar Merah

In this study, glass fiber-reinforced epoxy-nanoclay composite plates, with I.30E clay contents ranging between 0 and 5 wt.%, were manufactured by hand layup with hot pressing. Flexural strength of unexposed fiber-reinforced epoxy-nanoclay reached an optimum improvement of 11% for 1.5 wt.%. Scanning electron microscope analysis showed that at this clay loading, better interfacial adhesion of clay with glass fibers was achieved. At higher clay loadings, clay agglomeration and presence micro-voids led to less strength improvement. The maximum water uptake was found to decrease with increasing clay loading and moisture diffusion at 80℃ was about 80% higher than that at room temperature. Post exposure flexural tests revealed a behavior similar to that of unexposed samples with nanoclay loading of 1.5 wt.% leading to optimal flexural properties. Exposure to moisture resulted in degradation of fiber-reinforced epoxy-nanoclay flexural properties with about 36% reduction in strength for 80℃ and 8% for room temperature.


Sign in / Sign up

Export Citation Format

Share Document