Nanoclay enhancement of flexural properties and water uptake resistance of glass fiber-reinforced epoxy composites at different temperatures

2018 ◽  
Vol 53 (2) ◽  
pp. 143-154 ◽  
Author(s):  
Ahmad Rafiq ◽  
Necar Merah

In this study, glass fiber-reinforced epoxy-nanoclay composite plates, with I.30E clay contents ranging between 0 and 5 wt.%, were manufactured by hand layup with hot pressing. Flexural strength of unexposed fiber-reinforced epoxy-nanoclay reached an optimum improvement of 11% for 1.5 wt.%. Scanning electron microscope analysis showed that at this clay loading, better interfacial adhesion of clay with glass fibers was achieved. At higher clay loadings, clay agglomeration and presence micro-voids led to less strength improvement. The maximum water uptake was found to decrease with increasing clay loading and moisture diffusion at 80℃ was about 80% higher than that at room temperature. Post exposure flexural tests revealed a behavior similar to that of unexposed samples with nanoclay loading of 1.5 wt.% leading to optimal flexural properties. Exposure to moisture resulted in degradation of fiber-reinforced epoxy-nanoclay flexural properties with about 36% reduction in strength for 80℃ and 8% for room temperature.

2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Yasuhiro Tanimoto ◽  
Toshihiro Inami ◽  
Masaru Yamaguchi ◽  
Kazutaka Kasai ◽  
Norio Hirayama ◽  
...  

In this work, we investigated the properties of a glass-fiber-reinforced thermoplastic (GFRTP) composed of small-diameter (ϕ = 5 μm), high-strength glass (T-glass) fibers and polycarbonate for esthetic orthodontic wires formed using pultrusion. After fabricating such GFRTP round wires, the effects of varying fiber diameter (5 to 13 mm) on the mechanical properties, durabilities, and color stabilities were evaluated. The results showed that the mechanical properties of GFRTPs tend to increase with decreasing fiber diameter. Additionally, it was confirmed that the present GFRTP wires containing T-glass fibers have better flexural properties than previously reported GFRTP wires containing E-glass fibers. Meanwhile, thermocycling did not significantly affect the flexural properties of the GFRTP wires. Furthermore, the GFRTP wires showed color changes lower than the acceptable threshold level for color differences on immersion in coffee. From these results obtained in the present work, the GFRTP wires containing high-strength glass fibers have excellent properties for orthodontic applications. Our findings suggest that the GFRTPs might be applied to all phases of orthodontic treatment because their properties can be tuned by changing the fiber properties such as fiber type and diameter.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2250
Author(s):  
Mohammad Amjadi ◽  
Ali Fatemi

Short glass fiber-reinforced (SGFR) thermoplastics are used in many industries manufactured by injection molding which is the most common technique for polymeric parts production. Glass fibers are commonly used as the reinforced material with thermoplastics and injection molding. In this paper, a critical plane-based fatigue damage model is proposed for tension–tension or tension–compression fatigue life prediction of SGFR thermoplastics considering fiber orientation and mean stress effects. Temperature and frequency effects were also included by applying the proposed damage model into a general fatigue model. Model predictions are presented and discussed by comparing with the experimental data from the literature.


2013 ◽  
Vol 594-595 ◽  
pp. 629-633 ◽  
Author(s):  
Behzad Nematollahi ◽  
Jay Sanjayan ◽  
Jessie Xia Hui Chai ◽  
Tsui Ming Lu

This paper evaluates the effects of glass fiber addition on the properties of fresh and hardened fly ash based geopolymer concrete (GPC) activated by 8 M NaOH solution (28.6%) + Na2SiO3 (71.4%) with a SiO2/Na2O ratio of 2.0. Glass fibers at the dosages of 0.50%, 0.75%, 1.00% and 1.25% by volume of concrete were added to the GPC mix. The properties of fresh and hardened glass fiber reinforced fly ash based GPC in terms of workability, density, compressive and flexural strengths were compared with those of the fly ash based GPC without using glass fiber. The experimental results indicated that inclusion of the glass fibers resulted in decrease of the workability but increase of the density, compressive and flexural strengths of the fly ash based GPC with increased fiber content.


e-Polymers ◽  
2017 ◽  
Vol 17 (2) ◽  
pp. 159-166 ◽  
Author(s):  
Hyeong Min Yoo ◽  
Dong-Jun Kwon ◽  
Joung-Man Park ◽  
Sang Hyuk Yum ◽  
Woo Il Lee

AbstractA lab scale structural reaction injection molding (S-RIM) piece of equipment was designed and used to fabricate glass fiber reinforced polydicyclopentadiene (p-DCPD) composites for three different fiber contents. In order to obtain information regarding the optimal process temperature (>80°C) and the curing time (<30 s), differential scanning calorimetry (DSC) was used to investigate the curing behavior of DCPD resin under isothermal conditions. Further, a norbornene-based silane treatment was used to improve the interfacial adhesion between the glass fibers and DCPD as confirmed by the micro-droplet pull-out test and scanning electron microscopy (SEM). Fabrication of glass fiber/p-DCPD composites with improved mechanical properties was carried out based on the optimized process conditions and surface treatment of glass fiber.


Author(s):  
A. Saravanapandi Solairajan ◽  
S. Alexraj ◽  
P. Vijaya Rajan ◽  
Godwin Jose

Glass fiber reinforced composite material was fabricated using E-glass fiber with unsaturated polyester resin. In Glass Fiber Reinforced Plastic (GFRP) composites, the matrix of polymer is reinforced with glass fibers. The surface quality and dimensional precision significantly affect the parts during their suitable life, particularly in cases where the components come in contact with other elements or materials. In the current study, GFRP is machined with two cases i.e. with and without Nano combinations in lathe. These machining studies were carried out on lathe using three different cutting tools: namely Carbide (K-20), Cubic Boron Nitrate (CBN) and Polycrystalline Diamond (PCD). The cutting parameters considered were cutting speed, feed, and depth of cut. Surface Finish is the most important parameter measured by main spindle and compares the value with another. A second order mathematical model in terms of cutting parameters was developed using RSM. The results specify the developed model is suitable for prediction of surface roughness in machining of GFRP composites.


Sign in / Sign up

Export Citation Format

Share Document