scholarly journals PYR-41 and Thalidomide Impair Dendritic Cell Cross-Presentation by Inhibiting Myddosome Formation and Attenuating the Endosomal Recruitments of p97 and Sec61 via NF-κB Inactivation

2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Xiang You ◽  
Dan Dan Xu ◽  
Di Zhang ◽  
Jie Chen ◽  
Feng Guang Gao

PYR-41 and thalidomide have therapeutic effects on inflammation-associated diseases with side effects such as tumorigenesis. Cross-presentation allows dendritic cells (DC) to present endogenous antigen and induce protective immunity against microbe infection and tumors. But, up to now, the effects of PYR-41 and thalidomide on cross-presentation are still uncertain. In this study, we investigated the effect and mechanism of PYR-41 and thalidomide on DC cross-presentation by observing Myddosome formation, endosomal recruitment of p97 and Sec61, NF-κB activation, and cross-priming ability. We demonstrated that the inhibition of endosomal recruitment of p97 and Sec61, together with attenuated NF-κB activation and Myddosome formation, contributes to PYR-41- and thalidomide-impaired cross-presentation and thereby reverses cross-activation of T cells. These observations suggest that NF-κB signaling and p97 and Sec61 molecules are candidates for dealing with the side effects of PYR-41 and thalidomide.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wan Fatin Amira Wan Mohd Zawawi ◽  
M. H. Hibma ◽  
M. I. Salim ◽  
K. Jemon

AbstractBreast cancer is the most common cancer that causes death in women. Conventional therapies, including surgery and chemotherapy, have different therapeutic effects and are commonly associated with risks and side effects. Near infrared radiation is a technique with few side effects that is used for local hyperthermia, typically as an adjuvant to other cancer therapies. The understanding of the use of near NIR as a monotherapy, and its effects on the immune cells activation and infiltration, are limited. In this study, we investigate the effects of HT treatment using NIR on tumor regression and on the immune cells and molecules in breast tumors. Results from this study demonstrated that local HT by NIR at 43 °C reduced tumor progression and significantly increased the median survival of tumor-bearing mice. Immunohistochemical analysis revealed a significant reduction in cells proliferation in treated tumor, which was accompanied by an abundance of heat shock protein 70 (Hsp70). Increased numbers of activated dendritic cells were observed in the draining lymph nodes of the mice, along with infiltration of T cells, NK cells and B cells into the tumor. In contrast, tumor-infiltrated regulatory T cells were largely diminished from the tumor. In addition, higher IFN-γ and IL-2 secretion was observed in tumor of treated mice. Overall, results from this present study extends the understanding of using local HT by NIR to stimulate a favourable immune response against breast cancer.


Science ◽  
2018 ◽  
Vol 362 (6415) ◽  
pp. 694-699 ◽  
Author(s):  
Derek J. Theisen ◽  
Jesse T. Davidson ◽  
Carlos G. Briseño ◽  
Marco Gargaro ◽  
Elvin J. Lauron ◽  
...  

During the process of cross-presentation, viral or tumor-derived antigens are presented to CD8+ T cells by Batf3-dependent CD8α+/XCR1+ classical dendritic cells (cDC1s). We designed a functional CRISPR screen for previously unknown regulators of cross-presentation, and identified the BEACH domain–containing protein WDFY4 as essential for cross-presentation of cell-associated antigens by cDC1s in mice. However, WDFY4 was not required for major histocompatibility complex class II presentation, nor for cross-presentation by monocyte-derived dendritic cells. In contrast to Batf3–/– mice, Wdfy4–/– mice displayed normal lymphoid and nonlymphoid cDC1 populations that produce interleukin-12 and protect against Toxoplasma gondii infection. However, similar to Batf3–/– mice, Wdfy4–/– mice failed to prime virus-specific CD8+ T cells in vivo or induce tumor rejection, revealing a critical role for cross-presentation in antiviral and antitumor immunity.


1993 ◽  
Vol 178 (2) ◽  
pp. 633-642 ◽  
Author(s):  
N Bhardwaj ◽  
J W Young ◽  
A J Nisanian ◽  
J Baggers ◽  
R M Steinman

Dendritic cells are potent antigen-presenting cells for several primary immune responses and therefore provide an opportunity for evaluating the amounts of cell-associated antigens that are required for inducing T cell-mediated immunity. Because dendritic cells express very high levels of major histocompatibility complex (MHC) class II products, it has been assumed that high levels of ligands bound to MHC products ("signal one") are needed to stimulate quiescent T cells. Here we describe quantitative aspects underlying the stimulation of human blood T cells by a bacterial superantigen, staphylococcal enterotoxin A (SEA). The advantages of superantigens for quantitative studies of signal one are that these ligands: (a) engage MHC class II and the T cell receptor but do not require processing; (b) are efficiently presented to large numbers of quiescent T cells; and (c) can be pulsed onto dendritic cells before their application to T cells. Thus one can relate amounts of dendritic cell-associated SEA to subsequent lymphocyte stimulation. Using radioiodinated SEA, we noted that dendritic cells can bind 30-200 times more superantigen than B cells and monocytes. Nevertheless, this high SEA binding does not underlie the strong potency of dendritic cells to present antigen to T cells. Dendritic cells can sensitize quiescent T cells, isolated using monoclonals to appropriate CD45R epitopes, after a pulse of SEA that occupies a maximum of 0.1% of surface MHC class II molecules. This corresponds to an average of 2,000 molecules per dendritic cell. At these low doses of bound SEA, monoclonal antibodies to CD3, CD4, and CD28 almost completely block T cell proliferation. In addition to suggesting new roles for MHC class II on dendritic cells, especially the capture and retention of ligands at low external concentrations, the data reveal that primary T cells can generate a response to exceptionally low levels of signal one as long as these are delivered on dendritic cells.


2003 ◽  
Vol 198 (1) ◽  
pp. 123-132 ◽  
Author(s):  
Vincent Hurez ◽  
Arman Saparov ◽  
Albert Tousson ◽  
Michael J. Fuller ◽  
Takekazu Kubo ◽  
...  

Limited frequencies of T cells express IL-2 in primary antigenic responses, despite activation marker expression and proliferation by most clonal members. To define the basis for restricted IL-2 expression, a videomicroscopic system and IL-2 reporter transgenic model were used to characterize dendritic cell (DC)–T cell interactions. T cells destined to produce IL-2 required prolonged interactions with DCs, whereas most T cells established only transient interactions with DCs and were activated, but did not express IL-2. Extended conjugation of T cells with DCs was not always sufficient to initiate IL-2 expression. Thus, there is intrinsic variability in clonal T cell populations that restricts IL-2 commitment, and prolonged engagement with mature DCs is necessary, but not sufficient, for IL-2 gene transcription.


2021 ◽  
Vol 478 (22) ◽  
pp. 3999-4004
Author(s):  
Lawrence P. Kane

Tim-3 is a transmembrane protein that is highly expressed on subsets of chronically stimulated CD4+ helper and CD8+ cytotoxic T cells, with more transient expression during acute activation and infection. Tim-3 is also constitutively expressed by multiple types of myeloid cells. Like other TIM family members, Tim-3 can bind to phosphatidylserine displayed by apoptotic cells, and this interaction has been shown to mediate uptake of such cells by dendritic cells and cross-presentation of antigens to CD8+ T cells. In contrast, how the recognition of PS by Tim-3 might regulate the function of Tim-3+ T cells is not known. In their recent paper, Lemmon and colleagues demonstrate for the first time that recognition of PS by Tim-3 leads to enhanced T cell activation.


2020 ◽  
Author(s):  
Yunkai Wang ◽  
Jie Wang ◽  
Lu Han ◽  
Yun Li Shen ◽  
Jie Yun You ◽  
...  

Abstract Background: Triggering receptor expressed on myeloid cells (TREM)-1is identified as a major upstream proatherogenic receptor. However, the cellular processes modulated by TREM-1 in the development of atherosclerosis and plaque destabilization has not been fully elucidated. In this study, we investigated the effects of TREM-1 on dendritic cell maturation and dendritic cell–mediated T-cell activation induced by oxidized low-density lipoprotein (ox-LDL) in atherogenesis. Methods: Human peripheral blood monocytes were differentiated to dendritic cells and stimulated by ox-LDL. Naive autologous T cells were co-cultured with pretreated dendritic cells.The expressionof TREM-1 and the production of inflammatory cytokines were assessed by real-time PCR, western blot and ELISA.The expression of immune factors was determined with FACS to evaluate dendritic cell maturation and T-cell activation. Results: Stimulation with ox-LDL promoted dendritic cell maturation, TREM-1 expression and T-cell activation, and exposure of T cells to ox-LDL-treated dendritic cells induced production of interferon-γ and IL-17. Blocking TREM-1 suppressed dendritic cell maturation with low expression of CD1a, CD40, CD86 and HLA-DR, decreased production of TNF-α, IL-1β, IL-6 and MCP-1, and increased secretion of TGF-β and IL-10. In addition, stimulation of ox-LDL induced miR-155, miR-27, Let-7c and miR-185 expression, whereas inhibition of TREM-1 repressed miRNA-155. Silencing TREM-1 or miRNA-155 increased SOCS1 expression induced by ox-LDL. T cells derived from carotid atherosclerotic plaques or healthy individuals showed similar result patterns. Conclusion: These data suggest that TREM-1 modulates maturation of dendritic cells and activation of plaque T cells induced by ox-LDL, a pivotal player in atherogenesis.


2019 ◽  
Vol 91 ◽  
pp. 248-257 ◽  
Author(s):  
Sjoerd T.T. Schetters ◽  
Wouter S.P. Jong ◽  
Sophie K. Horrevorts ◽  
Laura J.W. Kruijssen ◽  
Steef Engels ◽  
...  

2020 ◽  
Vol 9 (8) ◽  
pp. 2661
Author(s):  
Rachel Abrahem ◽  
Emerald Chiang ◽  
Joseph Haquang ◽  
Amy Nham ◽  
Yu-Sam Ting ◽  
...  

Dendritic cells are the principal antigen-presenting cells (APCs) in the host defense mechanism. An altered dendritic cell response increases the risk of susceptibility of infections, such as Mycobacterium tuberculosis (M. tb), and the survival of the human immunodeficiency virus (HIV). The altered response of dendritic cells leads to decreased activity of T-helper-1 (Th1), Th2, Regulatory T cells (Tregs), and Th17 cells in tuberculosis (TB) infections due to a diminishment of cytokine release from these APCs, while HIV infection leads to DC maturation, allowing DCs to migrate to lymph nodes and the sub-mucosa where they then transfer HIV to CD4 T cells, although there is controversy around this topic. Increases in the levels of the antioxidant glutathione (GSH) plays a critical role in maintaining dendritic cell redox homeostasis, leading to an adequate immune response with sufficient cytokine release and a subsequent robust immune response. Thus, an understanding of the intricate pathways involved in the dendritic cell response are needed to prevent co-infections and co-morbidities in individuals with TB and HIV.


Sign in / Sign up

Export Citation Format

Share Document