scholarly journals Influences of Process Parameters and Vibration Parameters on the Forming Force in the Ultrasonic-Assisted Incremental Forming Process

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Lang Bai ◽  
Yan Li ◽  
Mingshun Yang ◽  
Zimeng Yao ◽  
Zhiyuan Yao

In the field of plastic forming, ultrasonic vibration has the advantages of small forming force and high forming quality, and it has been introduced into a single-point incremental plastic forming technique with high flexibility and high precision. The ultrasonic vibration single-point incremental compound forming technology with all the above advantages has been achieved. To reveal the variation tendency of the forming force under ultrasonic vibration and single-point incremental coupling, the process parameters (layer spacing, tool head radius, and feed rate) and vibration parameters (frequency and amplitude) on the forming force of the composite technology were quantitatively analyzed by theory, simulation, and experiment. The simulation and experimental results showed that ultrasonic vibration can significantly reduce the forming force of the composite technology. Compared with the simulation results, the theoretical results are not only closer to the experimental results but also have a shorter computation time and better prediction effect on the forming force. The change in the process parameters has a linear effect on the forming force, the nonlinearity of the vibratory parameters influences the forming force, and the frequencies and amplitudes in a suitable range allow the forming force to reach a minimum value. These conclusions have some significance for further studies on the ultrasonic vibratory single-point incremental composite forming technology.

2012 ◽  
Vol 430-432 ◽  
pp. 74-78 ◽  
Author(s):  
Gai Pin Cai ◽  
Cong Wen Xing ◽  
Zhi Hong Jiang ◽  
Zhong Kai Zhang

The deformation of vibration incremental forming process for sheet metal is in high complexity, theory research is not perfect. This subject using DEFORM simulation software, joined the vibration on the forming process of tool head and simulated the forming process base on different tool radius and vibration parameters. Simulation result indicated that vibration in greatly reduced the stress of the forming tool head. The right vibration parameters smoothed out the forming force largely, reduced sheet metal stress concentration, improved product quality and product yield. That has a higher degree of study and use value.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Yang Mingshun ◽  
Bai Lang ◽  
Lin Yunbo ◽  
Li Yan ◽  
Yuan Qilong ◽  
...  

With the more and more complexity demands of the market, the geometric accuracy of the part has become the main factor restricting the development of single point incremental forming technology (SPIF). For this reason, with the truncated cone as the target part, the radial accuracy error generation mechanism was analyzed from the aspects of sheet springback and residual stress distribution. Four factors and three levels of surface response experiments were designed using the Box-Behnken Design (BBD) for tool head diameter, layer spacing, sheet thickness, and wall angle. The single and interactive influence law of the process parameters on the radial accuracy was obtained. In response to the above research results, the ultrasonic vibration was introduced into the process of SPIF to reduce springback by reducing residual stress. The influence of vibration parameters on the accuracy was obtained through experiments. The results showed that ultrasonic vibration could effectively improve and control the accuracy of the part.


Author(s):  
M. Nikoueifar ◽  
A. Vaheb ◽  
M. Honarpisheh

Incremental sheet forming (ISF) is an innovative forming technology which is widely used in various sectors of mechanical production. This is particularly useful for rapid prototyping and limited batch without a specific die. A new class of this method is single-point incremental forming (SPIF). This paper presents a comprehensive experimental investigation on the SPIF of Aluminum sheets, and, in particular, the influence of the forming tool is taken into account. A new rolling ball tool is designed to follow this, and the formability of the Aluminum sheets under the SPIF procedure is investigated for both new and conventional tools. Moreover, a number of important process parameters such as the feed rate, forming force, and surface roughness are considered in the experiments’ design. Finally, the optimal conditions in achieving a developed SPIF procedure in terms of the mentioned factors are reported and discussed. The findings of this work suggest that the surface quality after the forming process can be enhanced by 55% when using the new designed tool, while the forming force is reduced by 38% at the same time.


2020 ◽  
Vol 110 (11-12) ◽  
pp. 838-843
Author(s):  
Philipp Müller ◽  
Bernd-Arno Behrens ◽  
Sven Hübner ◽  
Hendrik Vogt ◽  
Daniel Rosenbusch ◽  
...  

Techniken zur Steigerung der Formgebungsgrenzen in der Umformtechnik sind von hoher wirtschaftlicher Bedeutung. In dieser Arbeit wird eine Schwingungsüberlagerung im Krafthauptfluss eines Axialformprozesses zur Ausprägung einer Verzahnungsgeometrie untersucht. Die Auswirkungen der Schwingung auf die erzielbare Ausfüllung der Zahnkavitäten werden analysiert sowie die Parameter Schmierung und Oberflächengüte der Halbzeuge in ihrer kombinierten Wirkung untersucht. Es konnte eine Reduzierung der mittleren Umformkraft sowie eine Erhöhung der Formfüllung festgestellt werden. Techniques for extending the production limits in forming technology are of great economic importance. In this research, a superimposed oscillation in the main force flow of an axial forming process to form an axial gear geometry is investigated. The effects of the superimposed oscillation on the achievable form-filling of the tooth cavities are analyzed and the parameters lubrication and surface quality of the semi-finished products are investigated in their combined effect. A reduction of the averaged forming force as well as an increase of the form-filling could be achieved.


Author(s):  
Sherwan Mohammed Najm ◽  
Imre Paniti

AbstractIncremental Sheet Forming (ISF) has attracted attention due to its flexibility as far as its forming process and complexity in the deformation mode are concerned. Single Point Incremental Forming (SPIF) is one of the major types of ISF, which also constitutes the simplest type of ISF. If sufficient quality and accuracy without defects are desired, for the production of an ISF component, optimal parameters of the ISF process should be selected. In order to do that, an initial prediction of formability and geometric accuracy helps researchers select proper parameters when forming components using SPIF. In this process, selected parameters are tool materials and shapes. As evidenced by earlier studies, multiple forming tests with different process parameters have been conducted to experimentally explore such parameters when using SPIF. With regard to the range of these parameters, in the scope of this study, the influence of tool material, tool shape, tool-end corner radius, and tool surface roughness (Ra/Rz) were investigated experimentally on SPIF components: the studied factors include the formability and geometric accuracy of formed parts. In order to produce a well-established study, an appropriate modeling tool was needed. To this end, with the help of adopting the data collected from 108 components formed with the help of SPIF, Artificial Neural Network (ANN) was used to explore and determine proper materials and the geometry of forming tools: thus, ANN was applied to predict the formability and geometric accuracy as output. Process parameters were used as input data for the created ANN relying on actual values obtained from experimental components. In addition, an analytical equation was generated for each output based on the extracted weight and bias of the best network prediction. Compared to the experimental approach, analytical equations enable the researcher to estimate parameter values within a relatively short time and in a practicable way. Also, an estimate of Relative Importance (RI) of SPIF parameters (generated with the help of the partitioning weight method) concerning the expected output is also presented in the study. One of the key findings is that tool characteristics play an essential role in all predictions and fundamentally impact the final products.


2012 ◽  
Vol 560-561 ◽  
pp. 846-852 ◽  
Author(s):  
Qi Ma ◽  
Lin Hua ◽  
Dong Sheng Qian

Ring parts with small-hole and deep groove such as duplicate gear and double-side flange, are widely used in various engineering machineries. Three-roll cross rolling (TRCR) is a new advanced plastic forming technology for the processing of rings with small-hole and deep groove. In this paper, a 3D coupled thermo-mechanical FE model for TRCR of ring with small-hole and deep groove is established under ABAQUS software environment. By simulation and analysis, the evolution and distribution laws of strain and temperature in the forming process are revealed, and the effects of the key process parameters on the deformation uniformity are explored. The results provide valuable guideline for the technological parameter design and optimization.


2014 ◽  
Vol 556-562 ◽  
pp. 460-463 ◽  
Author(s):  
Xue Chen ◽  
Ming Zhe Li ◽  
Wen Hua Liu ◽  
Zhi Qiang Hou

To solve the problem of low material utilization in traditional stretch forming process, a flexible stretch forming method was proposed, which can be realized by interaction of the multi-point stretch forming die with discrete-gripper stretch forming machine. The principle and characteristics of sheet metal flexible stretch forming technology was introduced, structural composition and working principle of the multi-point stretch forming die and discrete-gripper stretch forming machine were expounded, and the technology experiments was carried out with a self-designed flexible stretch forming technology equipment for sheet metal. The experimental results indicate that structure of multi-point stretch forming die and discrete-gripper stretch forming machine are reasonable, and flexible stretch forming technology can be realized by above-mentioned die and machine, stretch forming parts has a good quality and its shape error can satisfy requirements of production.


2018 ◽  
Vol 19 (3) ◽  
pp. 313
Author(s):  
Masood Ghassabi ◽  
Milad Salimi ◽  
Mohammad Haghpanahi

Incremental forming is one of the most well-known forming processes for complex and asymmetric parts. This method uses a CNC machine, simple forming tool, and a die. This study focused on effects of some parameters such as the material, feed rate, pitch, rotational speed and movement strategy of tool on the dimensional precision, forming force, thickness distribution and fracture in the welding area. The results showed that single point incremental forming (SPIF) led to a better thickness distribution with lower tool force, whereas two-point incremental forming led to better dimensional accuracy. Rotational speed does not have any significant impact on the forming process while decreasing the feed rate partially reduced the forming force. According to the results, although dimensional precision in double point incremental forming is better than SPIF, when it comes to the thickness distribution, forming force, and economic issues, SPIF is in favor. The results also showed that by connecting two materials, different parameters for the two materials could be investigated simultaneously in one simulation process.


2018 ◽  
Author(s):  
Yi Shi ◽  
Jian Cao ◽  
Kornel F. Ehmann

Compared to the conventional single-point incremental forming (SPIF) processes, water jet incremental micro-forming (WJIMF) utilizes a high-speed and high-pressure water jet as a tool instead of a rigid round-tipped tool to fabricate thin shell micro objects. Thin foils were incrementally formed with micro-scale water jets on a specially designed testbed. In this paper, the effects on the water jet incremental micro-forming process with respect to several key process parameters, including water jet pressure, relative water jet diameter, sheet thickness, and feed rate, were experimentally studied using stainless steel foils. Experimental results indicate that feature geometry, especially depth, can be controlled by adjusting the processes parameters. The presented results and conclusions provide a foundation for future modeling work and the selection of process parameters to achieve high quality thin shell micro products.


2009 ◽  
Vol 626-627 ◽  
pp. 273-278 ◽  
Author(s):  
X.J. Li ◽  
Ming Zhe Li ◽  
C.G. Liu ◽  
Zhong Yr Cai

Based on Multi-Point (MP) forming technology and Single-Point Incremental (SPI) forming technology, MP-SPI combined forming method for sheet metal is proposed, the principle and two different forming techniques are illustrated firstly. Then the paper is focused on numerical analysis for the novel forming technique with explicit Finite Element (FE) algorithm. During simulation of spherical work-piece, dimpling occurs as a main forming defect in MP-SPI combined forming process. Simulation results show that the dimpling defect can be suppressed effectively by using elastic cushion. An appropriate thickness of elastic cushion is necessary to prevent dimpling. And also the deformation of the work-piece is sensitive to the shape of elastic cushion. The combined forming test shows that the numerical simulation result is closed to the experimental result.


Sign in / Sign up

Export Citation Format

Share Document