scholarly journals Energy Definition and Dark Energy: A Thermodynamic Analysis

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
H. Moradpour ◽  
J. P. Morais Graça ◽  
I. P. Lobo ◽  
I. G. Salako

Accepting the Komar mass definition of a source with energy-momentum tensor Tμν and using the thermodynamic pressure definition, we find a relaxed energy-momentum conservation law. Thereinafter, we study some cosmological consequences of the obtained energy-momentum conservation law. It has been found out that the dark sectors of cosmos are unifiable into one cosmic fluid in our setup. While this cosmic fluid impels the universe to enter an accelerated expansion phase, it may even show a baryonic behavior by itself during the cosmos evolution. Indeed, in this manner, while Tμν behaves baryonically, a part of it, namely, Tμν(e) which is satisfying the ordinary energy-momentum conservation law, is responsible for the current accelerated expansion.

Author(s):  
R. K. Tiwari ◽  
D. Sofuoğlu ◽  
A. Beesham

In this study, Friedmann–Robertson–Walker space-time filled with a perfect fluid in [Formula: see text] modified theory, where [Formula: see text] is the Ricci scalar and [Formula: see text] is the trace of the energy–momentum tensor of matter, has been considered. The investigation of the phase transition of the universe from the decelerating expansion phase to the accelerating one has been made by adopting a special form of the varying deceleration parameter that is inversely proportional to the Hubble parameter. The exact solution of the field equations has been derived. The kinematic and dynamical quantities of the model have been obtained and their evolutions have been discussed by means of their graphs. The statefinder diagnostic has been used and the age of the universe has been computed for testing the validity of the model. It has been shown that the dominant energy of the model is ordinary matter which behaves as the SCDM model at the beginning and it is a quintessence like fluid which behaves as the [Formula: see text]CDM model at late times.


2016 ◽  
Vol 31 (26) ◽  
pp. 1650151 ◽  
Author(s):  
Katsutaro Shimizu

We propose a gravitational energy–momentum (GEMT) tensor of the general relativity obtained using Noether’s theorem. It transforms as a tensor under general coordinate transformations. One of the two indices of the GEMT labels a local Lorentz frame that satisfies the energy–momentum conservation law. The energies for a gravitational wave, a Schwarzschild black hole and a Friedmann–Lemaitre–Robertson–Walker (FLRW) universe are calculated as examples. The gravitational energy of the Schwarzschild black hole exists only outside the horizon, its value being the negative of the black hole mass.


2020 ◽  
Vol 35 (02n03) ◽  
pp. 2040041
Author(s):  
J. C. Fabris ◽  
T. R. P. Caramês ◽  
A. Wojnar ◽  
H. E. S. Velten

Viscous properties are attributed to the dark sector of the Universe. They contribute to the accelerated expansion phase of the Universe and can alleviate existing tensions in the [Formula: see text]CDM model at small scales. We provide a short review of recent efforts on this topic. Different viscous models for the dark sector are analysed both from theoretical and observational point of view.


2005 ◽  
Vol 20 (11) ◽  
pp. 2341-2345 ◽  
Author(s):  
FREDERIC HENRY-COUANNIER

The parity and time reversal invariant actions, equations and their conjugated metric solutions are obtained in the context of a general relativistic model modified in order to suitably take into account discrete symmetries. The equations are not covariant however the predictions of the model, in particular its Schwarzschild metric solution in vacuum, only start to differ from those of General Relativity at the Post-Post-Newtonian order. No coordinate singularity (black hole) arises in the privileged coordinate system where the energy of gravity is found to vanish. Vacuum energies have no gravitational effects. A flat universe accelerated expansion phase is obtained without resorting to inflation nor a cosmological constant. The context may be promising to help us elucidate several outstanding enigmas such as the Pioneer anomalous blue-shift, flat galactic rotation curves or the universe voids.


2017 ◽  
Vol 384 ◽  
pp. 85-104 ◽  
Author(s):  
Andrew E. Chubykalo ◽  
Augusto Espinoza ◽  
B.P. Kosyakov

2016 ◽  
Vol 13 (01) ◽  
pp. 1650001 ◽  
Author(s):  
Kazuharu Bamba ◽  
Katsutaro Shimizu

We construct the gravitational energy–momentum tensor in general relativity through the Noether theorem. In particular, we explicitly demonstrate that the constructed quantity can vary as a tensor under the general coordinate transformation. Furthermore, we verify that the energy–momentum conservation is satisfied because one of the two indices of the energy–momentum tensor should be in the local Lorentz frame. It is also shown that the gravitational energy and the matter one cancel out in certain space-times.


Author(s):  
Bohua Sun

To extend the calculation power of tensor analysis, we introduce four new definition of tensor calculations. Some useful tensor identities have been proved. We demonstrate the application of the tensor identities in continuum mechanics: momentum conservation law and deformation superposition.


2018 ◽  
Vol 33 (33) ◽  
pp. 1850193 ◽  
Author(s):  
P. K. Sahoo ◽  
S. K. Tripathy ◽  
Parbati Sahoo

The phenomenon of accelerated expansion of the present universe and a cosmic transit aspect is explored in the framework of a modified gravity theory known as f(R, T) gravity (where R is the Ricci scalar and T is the trace of the energy–momentum tensor of the matter content). The cosmic transit phenomenon signifies a signature flipping behavior of the deceleration parameter. We employ a periodic varying deceleration parameter and obtained the exact solution of field equations. The dynamical features of the model including the oscillatory behavior of the EOS parameter are studied. We have also explored the obvious violation of energy–momentum conservation in f(R, T) gravity. The periodic behavior of energy conditions for the model are also discussed with a wide range of the free parameters.


Sign in / Sign up

Export Citation Format

Share Document