scholarly journals Metaheuristic Optimized Edge Detection for Recognition of Concrete Wall Cracks: A Comparative Study on the Performances of Roberts, Prewitt, Canny, and Sobel Algorithms

2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Nhat-Duc Hoang ◽  
Quoc-Lam Nguyen

Crack detection is a crucial task in the periodic survey of high-rise buildings and infrastructure. Manual survey is notorious for low productivity. This study is aimed at establishing an image processing-based method for detecting cracks on concrete wall surfaces in an automatic manner. The Roberts, Prewitt, Canny, and Sobel algorithms are employed as the edge detection methods for revealing the crack textures appearing in concrete walls. The median filtering and object cleaning operations are used to enhance the image and facilitate the crack recognition outcome. Since the edge detectors, the median filter, and the object cleaning operation all require the appropriate selection of tuning parameters, this study relies on the differential flower pollination algorithm as a metaheuristic to optimize the image processing-based crack detection model. Experimental results point out that the newly constructed approach that employs the Prewitt algorithm can achieve a good prediction outcome with classification accuracy rate = 89.95% and area under the curve = 0.90. Therefore, the proposed metaheuristic optimized image processing approach can be a promising alternative for automatic recognition of cracks on the concrete wall surface.

2013 ◽  
Vol 433-435 ◽  
pp. 426-429
Author(s):  
Jin Qiu Liu ◽  
Bing Fa Zhang ◽  
Yu Zeng Wang ◽  
Guang Ya Li ◽  
Jing Ru Han

A method of non-contact detection of bolt fracture have serial steps as follows: First of all the required data is obtained through image acquisition, then through the edge detection, image recognition and other image processing on the image to get the bolt fracture identification results, finally the non-contact measurement bolt fracture is realized. Experiments show that bolt crack detection method based on image processing, compared with the traditional detection methods improve the efficiency of detection and improve the detection accuracy. The method for bolt crack detection is feasible.


Author(s):  
Weiwei Li ◽  
Fanlei Yan

Introduction: Image processing technology is widely used for crack detection. This technology is to build a data acquisition system and use computer vision technology for image analysis. Because of its simplicity in the processing, many of the image processing detection methods were proposed. It is relatively easy to deploy and has low cost. Method: The heterogeneity of the external light usually changes the authenticity of each target in the image, which will seriously cause the experiment to fail. At this time, the image needs to be processed by the gamma transform.Based on the analysis of the characteristics of the image of the mine car baffle, this paper improves the Gamma transform, and uses the improved Gamma transform to enhance the image. Result: We can conclude that the algorithm in this paper can accurately detect crack areas with an actual width greater than 1.2 mm, and the error between the detected crack length and the actual length is between (-2, 2) mm. In practice, this error is completely acceptable. Discussion: To compare the performance of a new crack detection method with existing methods, are used. The two most well-known traditional methods, Canny and Sobel edge detection, are selected. Although the Sobel edge detection provides some crack information. The texture of the surface of the mine cart baffle detected has caused great interference to the crack identification. Conclusion: If the cracks appearing on the mine car baffle are not found in time, they often cause accidents. Therefore, effective crack detection must be performed. If manual inspection is adopted for crack detection, it will be labor-intensive and easy to miss inspection. In order to reduce the labor of crack detection of mine cars and improve the accuracy of detection, this paper, based on the detection platform built, performs preprocessing, image enhancement, and convolution operations on the collected crack images of the mine car baffle.


Author(s):  
Shouvik Chakraborty ◽  
Mousomi Roy ◽  
Sirshendu Hore

Image segmentation is one of the fundamental problems in image processing. In digital image processing, there are many image segmentation techniques. One of the most important techniques is Edge detection techniques for natural image segmentation. Edge is a one of the basic feature of an image. Edge detection can be used as a fundamental tool for image segmentation. Edge detection methods transform original images into edge images benefits from the changes of grey tones in the image. The image edges include a good number of rich information that is very significant for obtaining the image characteristic by object recognition and analyzing the image. In a gray scale image, the edge is a local feature that, within a neighborhood, separates two regions, in each of which the gray level is more or less uniform with different values on the two sides of the edge. In this paper, the main objective is to study the theory of edge detection for image segmentation using various computing approaches.


2020 ◽  
Vol 10 (3) ◽  
pp. 1012
Author(s):  
Wei-Chen Lee ◽  
Pei-Ling Tai

Defect detection is a key element of quality assurance in many modern manufacturing processes. Defect detection methods, however, often involve a great deal of time and manual work. Image processing has become widely used as a means of reducing the required detection time and effort in manufacturing. To this end, this study proposes an image-processing algorithm for detecting defects in images with striped backgrounds—defect types include scratches and stains. In order to detect defects, the proposed method first pre-processes images and rotates them to align the stripes horizontally. Then, the images are divided into two parts: blocks and intervals. For the blocks, a one-dimensional median filter is used to generate defect-free images, and the difference between the original images and the defect-free images is calculated to find defects. For the intervals, defects are identified using image binarization. Finally, the method superposes the results found in the blocks and intervals to obtain final images with all defects marked. This study evaluated the performance of the proposed algorithm using 65 synthesized images and 20 actual images. The method achieved an accuracy of 97.2% based on the correctness of the defect locations. The defects that could not be identified were those whose greyscales were very close to those of the background.


2019 ◽  
Vol 22 (16) ◽  
pp. 3412-3419 ◽  
Author(s):  
Xiao-Wei Ye ◽  
Tao Jin ◽  
Peng-Yu Chen

Cracks are a potential threat to the safety and endurance of civil infrastructures, and therefore, careful and regular structural crack inspection is needed during their long-term service periods. Many image-processing approaches have been developed for structural crack detection. However, like traditional edge detection algorithms, these methods are easily disturbed by the environmental effect. Convolutional neural networks are newly developed methods and have excellent performances in the image-classification tasks. This study proposes a fully convolutional network called Ci-Net for structural crack identification. Pixel-level labeled image training data are obtained from the online data set. Four indices are adopted to evaluate the performance of the trained Ci-Net. Crack images from an indoor concrete beam test are adopted for validation of its structural crack recognition capacity. The recognition results are also compared with those obtained by the edge detection methods. It indicates that Ci-Net exhibits a better performance over the edge detection methods in structural damage detection.


2016 ◽  
Vol 62 (1) ◽  
pp. 49-54
Author(s):  
Krzysztof Dmitruk ◽  
Michał Mazur ◽  
Marcin Denkowski ◽  
Paweł Mikołajczak

Abstract An X-ray scanning and image processing have a vast range of applications in the security. An image of a content of some package being passed for example to an airplane or to the court house may help to figure out if there are any dangerous objects inside that package and to avoid possible threatening situation. As the raw X-ray images are not always easy to analyze and interpret, some image processing methods like an object detection, a frequency resolution increase or a pseudocolouring are being used. In this paper, we propose a pseudocoloring improvement over material based approach. By addition of the edge detection methods we fill and sharpen colour layers over the image, making it easier to interpret. We demonstrate the effectiveness of the methods using real data, acquired from a professional dual energy X-ray scanner.


2020 ◽  
Vol 4 (2) ◽  
pp. 345-351
Author(s):  
Wicaksono Yuli Sulistyo ◽  
Imam Riadi ◽  
Anton Yudhana

Identification of object boundaries in a digital image is developing rapidly in line with advances in computer technology for image processing. Edge detection becomes important because humans in recognizing the object of an image will pay attention to the edges contained in the image. Edge detection of an image is done because the edge of the object in the image contains very important information, the information obtained can be either size or shape. The edge detection method used in this study is Sobel operator, Prewitt operator, Laplace operator, Laplacian of Gaussian (LoG) operator and Kirsch operator which are compared and analyzed in the five methods. The results of the comparison show that the clear margins are the Sobel, Prewitt and Kirsch operators, with PSNR calculations that produce values ​​above 30 dB. Laplace and LoG operators only have an average PSNR value below 30 dB. Other quality comparisons use the histogram value and the contrast value with the highest value results in the Laplace and LoG operators with an average histogram value of 110 and a contrast value of 24. The lowest histogram and contrast value are owned by the Sobel and Prewitt operators.  


2020 ◽  
Vol 10 (1) ◽  
pp. 11
Author(s):  
Ayu Fitri Amalia ◽  
Widodo Budhi

The digital image processing is one way to manipulate one or more digital images. Image segmentation has an essential role in the field of image analysis. The aim of this study was to develop an application to perform digital image processing of neutron digital radiographic images, hoping to improve the image quality of the digital images produced. The quality of edge detection could be used for the introduction of neutron digital radiographic image patterns through artificial intelligence. Interaction of neutrons with the matter mainly by nuclear reaction, elastic, and inelastic scattering. A neutron can quickly enter into a nucleus of an atom and cause a reaction. It is because a neutron has no charge. Neutrons can be used for digital imaging due to high-resolution information from deep layers of the material. The attenuated neutron beam in neutron radiography are passing through the investigated object. The object in a uniform neutron beam is irradiated to obtain an image neutron. The technique used in segmenting the neutron radiography in this study was a digital technique using a camera with a charge-coupled device (CCD), which was deemed more efficient technique compared to the conventional one. Through this technique, images could be displayed directly on the monitor without going through the film washing process. Edge detection methods were implemented in the algorithm program. It was the first step to complement the image information where edges characterize object boundaries. It is useful for the process of segmenting and identifying objects in neutron digital radiography images. The edge detection methods used in this study were Sobel, Prewitt, Canny, and Laplacian of Gaussian. According to the results of the image that have been tested for edge detection, the best image was carried out by the Canny operator because the method is more explicit. The obtained edges were more connected than the other methods which are still broken. The Canny technique provided edge gradient orientation which resulted in a proper localization.


2020 ◽  
Author(s):  
Ramesh Kulkarni ◽  
Kavita Tewari ◽  
Anandalakshmi Kumar ◽  
Sayali Gogate ◽  
Vinita Chanchlani

Sign in / Sign up

Export Citation Format

Share Document