Research on Bolt Crack Detection Method Based on Image Processing

2013 ◽  
Vol 433-435 ◽  
pp. 426-429
Author(s):  
Jin Qiu Liu ◽  
Bing Fa Zhang ◽  
Yu Zeng Wang ◽  
Guang Ya Li ◽  
Jing Ru Han

A method of non-contact detection of bolt fracture have serial steps as follows: First of all the required data is obtained through image acquisition, then through the edge detection, image recognition and other image processing on the image to get the bolt fracture identification results, finally the non-contact measurement bolt fracture is realized. Experiments show that bolt crack detection method based on image processing, compared with the traditional detection methods improve the efficiency of detection and improve the detection accuracy. The method for bolt crack detection is feasible.

2020 ◽  
Vol 4 (2) ◽  
pp. 345-351
Author(s):  
Wicaksono Yuli Sulistyo ◽  
Imam Riadi ◽  
Anton Yudhana

Identification of object boundaries in a digital image is developing rapidly in line with advances in computer technology for image processing. Edge detection becomes important because humans in recognizing the object of an image will pay attention to the edges contained in the image. Edge detection of an image is done because the edge of the object in the image contains very important information, the information obtained can be either size or shape. The edge detection method used in this study is Sobel operator, Prewitt operator, Laplace operator, Laplacian of Gaussian (LoG) operator and Kirsch operator which are compared and analyzed in the five methods. The results of the comparison show that the clear margins are the Sobel, Prewitt and Kirsch operators, with PSNR calculations that produce values ​​above 30 dB. Laplace and LoG operators only have an average PSNR value below 30 dB. Other quality comparisons use the histogram value and the contrast value with the highest value results in the Laplace and LoG operators with an average histogram value of 110 and a contrast value of 24. The lowest histogram and contrast value are owned by the Sobel and Prewitt operators.  


2013 ◽  
Vol 475-476 ◽  
pp. 351-354
Author(s):  
Ya Zhou Zhou ◽  
Qiu Cheng Sun ◽  
Hao Chen

A new sub-pixel edge detection method is proposed to improve the detection accuracy. Firstly, using the theory of interpolation to acquire the continuous gray level distribution in one-dimensional .Therefore, the location of edge is determined. Secondly, in view of the two-dimensional edge detection, the moment spatial is taken into account. At last, the two-dimensional edge detection simplified as one-dimensional. From the test ,its known that the accuracy of the this algorithm is higher, especially for images with noise. So, the proposed algorithm has good applicability in image processing.


2015 ◽  
Vol 9 (1) ◽  
pp. 697-702
Author(s):  
Guodong Sun ◽  
Wei Xu ◽  
Lei Peng

The traditional quality detection method for transparent Nonel tubes relies on human vision, which is inefficient and susceptible to subjective factors. Especially for Nonel tubes filled with the explosive, missed defects would lead to potential danger in blasting engineering. The factors affecting the quality of Nonel tubes mainly include the uniformity of explosive filling and the external diameter of Nonel tubes. The existing detection methods, such as Scalar method, Analysis method and infrared detection technology, suffer from the following drawbacks: low detection accuracy, low efficiency and limited detection items. A new quality detection system of Nonel tubes has been developed based on machine vision in order to overcome these drawbacks. Firstly the system architecture for quality detection is presented. Then the detection method of explosive dosage and the relevant criteria are proposed based on mapping relationship between the explosive dosage and the gray value in order to detect the excessive explosive faults, insufficient explosive faults and black spots. Finally an algorithm based on image processing is designed to measure the external diameter of Nonel tubes. The experiments and practical operations in several Nonel tube manufacturers have proved the defect recognition rate of proposed system can surpass 95% at the detection speed of 100m/min, and system performance can meet the quality detection requirements of Nonel tubes. Therefore this quality detection method can save human resources and ensure the quality of Nonel tubes.


Author(s):  
Weiwei Li ◽  
Fanlei Yan

Introduction: Image processing technology is widely used for crack detection. This technology is to build a data acquisition system and use computer vision technology for image analysis. Because of its simplicity in the processing, many of the image processing detection methods were proposed. It is relatively easy to deploy and has low cost. Method: The heterogeneity of the external light usually changes the authenticity of each target in the image, which will seriously cause the experiment to fail. At this time, the image needs to be processed by the gamma transform.Based on the analysis of the characteristics of the image of the mine car baffle, this paper improves the Gamma transform, and uses the improved Gamma transform to enhance the image. Result: We can conclude that the algorithm in this paper can accurately detect crack areas with an actual width greater than 1.2 mm, and the error between the detected crack length and the actual length is between (-2, 2) mm. In practice, this error is completely acceptable. Discussion: To compare the performance of a new crack detection method with existing methods, are used. The two most well-known traditional methods, Canny and Sobel edge detection, are selected. Although the Sobel edge detection provides some crack information. The texture of the surface of the mine cart baffle detected has caused great interference to the crack identification. Conclusion: If the cracks appearing on the mine car baffle are not found in time, they often cause accidents. Therefore, effective crack detection must be performed. If manual inspection is adopted for crack detection, it will be labor-intensive and easy to miss inspection. In order to reduce the labor of crack detection of mine cars and improve the accuracy of detection, this paper, based on the detection platform built, performs preprocessing, image enhancement, and convolution operations on the collected crack images of the mine car baffle.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Nhat-Duc Hoang ◽  
Quoc-Lam Nguyen

Crack detection is a crucial task in the periodic survey of high-rise buildings and infrastructure. Manual survey is notorious for low productivity. This study is aimed at establishing an image processing-based method for detecting cracks on concrete wall surfaces in an automatic manner. The Roberts, Prewitt, Canny, and Sobel algorithms are employed as the edge detection methods for revealing the crack textures appearing in concrete walls. The median filtering and object cleaning operations are used to enhance the image and facilitate the crack recognition outcome. Since the edge detectors, the median filter, and the object cleaning operation all require the appropriate selection of tuning parameters, this study relies on the differential flower pollination algorithm as a metaheuristic to optimize the image processing-based crack detection model. Experimental results point out that the newly constructed approach that employs the Prewitt algorithm can achieve a good prediction outcome with classification accuracy rate = 89.95% and area under the curve = 0.90. Therefore, the proposed metaheuristic optimized image processing approach can be a promising alternative for automatic recognition of cracks on the concrete wall surface.


2020 ◽  
Vol 10 (23) ◽  
pp. 8436
Author(s):  
Xin Chen ◽  
Zhi Ye ◽  
Jun Yuan Xia ◽  
Jie Xiu Wang ◽  
Bo Hai Ji

To investigate the feasibility analysis of ultrasonic detection methods applied in the fatigue crack characteristics of steel structures, the double-probe ultrasonic detection method was applied to the prefabricated crack specimens fabricated from of flat steel plate. The test features including length, width, depth, angle, and crack location were considered. Based on the calculation of geometric relationship and experimental results, a method for judging the crack tip position was developed. The formulae for determining the depth and angle of crack were not only established but also analyzed the detection accuracy of the double-probe penetration method. The feasibility of this method in weld crack detection was verified by a combination of the finite-element simulation and actual experiment. The results showed that the ratio of crack tip wave height to crack free wave height ωK is related to the K value (K value is one of the parameters of the angle probe, which is defined as the tangent value of angle β between the incident wave and an interface normal line), but the influence of crack depth and width can be ignored. Due to higher detection accuracy for crack depth and angle, a double-probe penetrating method could improve the detection accuracy for crack angle by nearly 5% more than the single probe pulse reflection method. Therefore, application of the double-probe penetrating method had a significant impact on accurate crack detection of rib-to-deck weld in the practical issue.


Author(s):  
Nur Mutiara Syahrian ◽  
Pola Risma ◽  
Tresna Dewi

Piping setup is very important to ensure the safety and eligibility of the piping system before applied in industry. One of the techniques to facilitate perfect piping setup is by employing pipe monitoring robot. Pipe monitoring robot is designed in this research to monitor cracks or any other defects occur inside a pipe. This automatic monitoring is conducted by the application of image processing with canny edge detection. Canny edge detection method detects the edges or lines of any cracks inside the pipe and processes them to create differences in image, therefore only the cracks can be shown and finally, those cracks can be well analyzed. Canny edge detection has 5 processing techniques that are smoothing, finding gradients, non-maximum suppression, double thresholding, and edge tracking by hysteresis. In this research, the experiment was conducted by letting a robot monitoring new pipe and detecting cracks. Two cracks samples were taken and analyzed. The results show that the best value for smoothing is 10 and 5 for thresholding in getting not too blurred or to sharp result.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1581
Author(s):  
Xiaolong Chen ◽  
Jian Li ◽  
Shuowen Huang ◽  
Hao Cui ◽  
Peirong Liu ◽  
...  

Cracks are one of the main distresses that occur on concrete surfaces. Traditional methods for detecting cracks based on two-dimensional (2D) images can be hampered by stains, shadows, and other artifacts, while various three-dimensional (3D) crack-detection techniques, using point clouds, are less affected in this regard but are limited by the measurement accuracy of the 3D laser scanner. In this study, we propose an automatic crack-detection method that fuses 3D point clouds and 2D images based on an improved Otsu algorithm, which consists of the following four major procedures. First, a high-precision registration of a depth image projected from 3D point clouds and 2D images is performed. Second, pixel-level image fusion is performed, which fuses the depth and gray information. Third, a rough crack image is obtained from the fusion image using the improved Otsu method. Finally, the connected domain labeling and morphological methods are used to finely extract the cracks. Experimentally, the proposed method was tested at multiple scales and with various types of concrete crack. The results demonstrate that the proposed method can achieve an average precision of 89.0%, recall of 84.8%, and F1 score of 86.7%, performing significantly better than the single image (average F1 score of 67.6%) and single point cloud (average F1 score of 76.0%) methods. Accordingly, the proposed method has high detection accuracy and universality, indicating its wide potential application as an automatic method for concrete-crack detection.


2012 ◽  
Vol 572 ◽  
pp. 338-342 ◽  
Author(s):  
Zhi Guo Liang ◽  
Quan Yang ◽  
Ke Xu ◽  
Fei He ◽  
Xiao Chen Wang ◽  
...  

Structured light 3D measurement technology with its simple structure, non-contact measurement, fast measurement speed and other advantages, has been widely used. Steel plate surface quality detection is not confined to the two-dimensional feature of gray detection, and local topography measurement for surface quality of steel plate detection becomes increasingly important. In this paper, steel plate surface 3D detection method based on structured light and the factors affecting the measurement accuracy are analyzed. Several effective methods of improving 3D detection accuracy are put forward. Compared with the traditional structured light 3D detection methods, the detection accuracy of new methods is remarkably improved, thus possessing better application values.


Sign in / Sign up

Export Citation Format

Share Document