scholarly journals Near Infrared Spectroscopy Based on Supervised Pattern Recognition Methods for Rapid Identification of Adulterated Edible Gelatin

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Hao Zhang ◽  
Haifeng Sun ◽  
Ling Wang ◽  
Shun Wang ◽  
Wei Zhang ◽  
...  

The aim of this work is to identify the adulteration of edible gelatin using near-infrared (NIR) spectroscopy combined with supervised pattern recognition methods. The spectral data obtained from a total of 144 samples consisting of six kinds of adulterated gelatin gels with different mixture ratios were processed with multiplicative scatter correction (MSC), Savitzky–Golay (SG) smoothing, and min-max normalization. Principal component analysis (PCA) was first carried out for spectral analysis, while the six gelatin categories could not be clearly distinguished. Further, linear discriminant analysis (LDA), soft independent modelling of class analogy (SIMCA), backpropagation neural network (BPNN), and support vector machine (SVM) were introduced to establish discrimination models for identifying the adulterated gelatin gels, which gave a total correct recognition rate of 97.44%, 100%, 97.44%, and 100%, respectively. For the SIMCA model with significant level α = 0.05, sample overlapping clustering appeared; thus, the SVM model presents the best recognition ability among these four discrimination models for the classification of edible gelatin adulteration. The results demonstrate that NIR spectroscopy combined with unsupervised pattern recognition methods can quickly and accurately identify edible gelatin with different adulteration levels, providing a new possibility for the detection of industrial gelatin illegally added into food products.

2020 ◽  
Vol 90 (19-20) ◽  
pp. 2275-2283
Author(s):  
Mingxia Li ◽  
Guangting Han ◽  
Wei Jiang ◽  
Chengfeng Zhou ◽  
Yuanming Zhang ◽  
...  

Plant dye is a promising dyestuff to be used in textiles due to its unique environmental compatibility. However, currently there is no effective method for the identification of plant-dyed and chemical-dyed textiles. In this study, near-infrared (NIR) spectroscopy combined with three kinds of pattern recognition methods, namely soft independent modeling of class analogy (SIMCA), partial least squares (PLS) regression and principal component regression (PCR), were applied to identify cotton fabrics dyed with plant and chemical dyes. A total of 336 plant dye and chemical dye dyed cotton fabrics were prepared and the NIR spectra were collected; 267 samples were used as the calibration set, while the remaining 69 samples were used as the validation set. After pretreatment with the Savitzky–Golay first derivative, the calibration model was constructed. In the SIMCA model, the correct recognition rate values of the calibration and prediction sets were 100% and 98.55%, respectively. The PLS model showed that the number of principal components (PCs) and the correlation coefficient ( R2) were 8 and 0.9978, respectively, and the results of PCR were PC = 10, R2 = 0.9937. Both methods were satisfactory for the predicted results. The overall results indicated that NIR spectroscopy could be used for rapid and nondestructive identification of plant-dyed cotton fabrics and chemical-dyed cotton fabrics.


2012 ◽  
Vol 236-237 ◽  
pp. 89-94 ◽  
Author(s):  
Hai Qing Yang ◽  
Wei Qiang Luo ◽  
Wen Jing Wang

Classification of grape seed species is a useful tool to obtain seeds with desired quality traits. This study aimed at rapidly and nondestructively discriminating four varieties of grape seeds using ultra violet, visible and near infrared (UV-VIS-NIR) spectroscopy with wavelength range of 210­1100 nm. A hundred twenty grape seed samples were divided for calibration (n=80) and validation (n=40). The spectra were subjected to a principal component analysis (PCA) with the leading 10 principal components (PCs) used to build calibration models. The obtained PCs were treated by linear discriminant analysis (LDA), artificial neural network (ANN) and support vector machine (SVM) to build various discrimination models. Validation results showed that the PC-LDA model developed for the full range of UV-VIS-NIR achieved better performance than those developed for partial wavelengths, i.e. UV, VIS, NIR, UV-VIS, and VIS-NIR. The PC-LDA model with 8 PCs achieved best performance with 100% discrimination accuracy. This experiment suggests that the UV-VIS-NIR spectroscopy coupled with PC-LDA calibration method is promising for the nondestructive discrimination of grape seed varieties.


2008 ◽  
Vol 26 (No. 5) ◽  
pp. 360-367 ◽  
Author(s):  
Q. Chen ◽  
J. Zhao ◽  
M. Liu ◽  
J. Cai

Due to more and more tea varieties in the current tea market, rapid and accurate identification of tea (<I>Camellia sinensis</I> L.) varieties is crucial to the tea quality control. Fourier Transform Near-Infrared (FT-NIR) spectroscopy coupled with the pattern recognition was used to identify individual tea varieties as a rapid and non-invasive analytical tool in this work. Seven varieties of Chinese tea were studied in the experiment. Linear Discriminant Analysis (LDA) and Artificial Neural Network (ANN) were compared to construct the identification models based on Principal Component Analysis (PCA). The number of principal components factors (PCs) was optimised in the constructing model. The experimental results showed that the performance of ANN model was better than LDA models. The optimal ANN model was achieved when four PCs were used, identification rates being all 100% in the training and prediction sets. The overall results demonstrated that FT-NIR spectroscopy technology with ANN pattern recognition method can be successfully applied as a rapid method to identify tea varieties.


2019 ◽  
Vol 19 (2) ◽  
pp. 201-209 ◽  
Author(s):  
Jinfeng Zhou ◽  
Lingjie Yu ◽  
Qian Ding ◽  
Rongwu Wang

Abstract Fibers are raw materials used for manufacturing yarns and fabrics, and their properties are closely related to the performances of their derivatives. It is indispensable to implement fiber identification in analyzing textile raw materials. In this paper, seven common fibers, including cotton, tencel, wool, cashmere, polyethylene terephthalate (PET), polylactic acid (PLA), and polypropylene (PP), were prepared. After analyzing the merits and demerits of the current methods used to identify fibers, near-infrared (NIR) spectroscopy was used owing to its significant superiorities, the foremost of which is it can capture the tiny information differences in chemical compositions and morphological features to display the characteristic spectral curve of each fiber. First, the fibers’ spectra were collected, and then, the relationships between the vibrations of characteristic chemical groups and the corresponding wavelengths were researched to organize a spectral information library that would be beneficial to achieve quick identification and classification. Finally, to achieve intelligent detection, pattern recognition approaches, including principal component analysis (PCA) (used to extract information of interest), soft independent modeling of class analogy (SIMCA), and linear discrimination analysis (LDA) (defined using two classifiers), assisted in accomplishing fiber identification. The experimental results – obtained by combining PCA and SIMCA – displayed that five of seven target fibers, namely, cotton, tencel, PP, PLA, and PET, were distributed with 100% recognition rate and 100% rejection rate, but wool and cashmere fibers yielded confusing results and led to relatively low recognition rate because of the high proportion of similarities between these two fibers. Therefore, the six spectral bands of interest unique to wool and cashmere fibers were selected, and the absorbance intensities were imported into the classifier LDA, where wool and cashmere were group-distributed in two different regions with 100% recognition rate. Consequently, the seven target fibers were accurately and quickly distinguished by the NIR method to guide the fiber identification of textile materials.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Caihong Li ◽  
Lingling Li ◽  
Yuan Wu ◽  
Min Lu ◽  
Yi Yang ◽  
...  

Near-infrared (NIR) spectra of apple samples were submitted in this paper to principal component analysis (PCA) and successive projections algorithm (SPA) to conduct variable selection. Three pattern recognition methods, backpropagation neural network (BPNN), support vector machine (SVM), and extreme learning machine (ELM), were applied to establish models for distinguishing apples of different varieties and geographical origins. Experimental results show that ELM models performed better on identifying apple variety and geographical origin than others. Especially, the SPA-ELM model could reach 98.33% identification accuracy on the calibration set and 96.67% on the prediction set. This study suggests that it is feasible to identify apple variety and cultivation region by using NIR spectroscopy.


2019 ◽  
Vol 37 (No. 1) ◽  
pp. 21-28 ◽  
Author(s):  
Virág Csorba ◽  
Marietta Fodor ◽  
Szilvia Kovács ◽  
Magdolna Tóth

Fruit samples were analysed to investigate the suitability of Fourier transform near infrared spectroscopy (FT-NIR) for the rapid discrimination of elderberry genotypes. Parallel analysis with classical chemical techniques and spectral measurements was performed on 11 cultivars originating from various European countries. The titratable acidity (TA) and soluble solids content (SSC) of the fruit, and the geographical origin and breeding method of the cultivar were used as reference data. Three spectrum transformation methods (standard normal variation, multiplicative scatter correction and first derivative) were applied in the calibration process. The statistical analysis and comparison of the samples was carried out using principal component analysis (PCA) and linear discriminant analysis (LDA). In all cases the analysis demonstrated a correlation between the spectra and both the chemical traits (TA and SSC) of the fruit and the other reference data, indicating that pattern recognition was not a chance occurrence. This work provides the first evidence that the NIR technique can be successfully applied to distinguish between elderberry genotypes on the basis of fruit quality, thus opening up new possibilities in breeding cultivars for food industry purposes.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Hui Chen ◽  
Zan Lin ◽  
Chao Tan

Near-infrared (NIR) spectroscopy technique offers many potential advantages as tool for biomedical analysis since it enables the subtle biochemical signatures related to pathology to be detected and extracted. In conjunction with advanced chemometrics, NIR spectroscopy opens the possibility of their use in cancer diagnosis. The study focuses on the application of near-infrared (NIR) spectroscopy and classification models for discriminating colorectal cancer. A total of 107 surgical specimens and a corresponding NIR diffuse reflection spectral dataset were prepared. Three preprocessing methods were attempted and least-squares support vector machine (LS-SVM) was used to build a classification model. The hybrid preprocessing of first derivative and principal component analysis (PCA) resulted in the best LS-SVM model with the sensitivity and specificity of 0.96 and 0.96 for the training and 0.94 and 0.96 for test sets, respectively. The similarity performance on both subsets indicated that overfitting did not occur, assuring the robustness and reliability of the developed LS-SVM model. The area of receiver operating characteristic (ROC) curve was 0.99, demonstrating once again the high prediction power of the model. The result confirms the applicability of the combination of NIR spectroscopy, LS-SVM, PCA, and first derivative preprocessing for cancer diagnosis.


2021 ◽  
pp. 096703352098731
Author(s):  
Adenilton C da Silva ◽  
Lívia PD Ribeiro ◽  
Ruth MB Vidal ◽  
Wladiana O Matos ◽  
Gisele S Lopes

The use of alcohol-based hand sanitizers is recommended as one of several strategies to minimize contamination and spread of the COVID-19 disease. Current reports suggest that the virucidal potential of ethanol occurs at concentrations close to 70%. Traditional methods of verifying the ethanol concentration in such products invite potential errors due to the viscosity of chemical components or may be prohibitively expensive to undertake in large demand. Near infrared (NIR) spectroscopy and chemometrics have already been used for the determination of ethanol in other matrices and present an alternative fast and reliable approach to quality control of alcohol-based hand sanitizers. In this study, a portable NIR spectrometer combined with classification chemometric tools, i.e., partial least square discriminant analysis (PLS–DA) and linear discriminant analysis with successive algorithm projection (SPA–LDA) were used to construct models to identify conforming and non-conforming commercial and laboratory synthesized hand sanitizer samples. Principal component analysis (PCA) was applied in an exploratory data study. Three principal components accounted for 99% of data variance and demonstrate clustering of conforming and non-conforming samples. The PLS–DA and SPA–LDA classification models presented 77 and 100% of accuracy in cross/internal validation respectively and 100% of accuracy in the classification of test samples. A total of 43% commercial samples evaluated using the PLS–DA and SPA–LDA presented ethanol content non-conforming for hand sanitizer gel. These results indicate that use of NIR spectroscopy and chemometrics is a promising strategy, yielding a method that is fast, portable, and reliable for discrimination of alcohol-based hand sanitizers with respect to conforming and non-conforming ethanol concentrations.


2020 ◽  
Vol 28 (4) ◽  
pp. 224-235
Author(s):  
Irina M Benson ◽  
Beverly K Barnett ◽  
Thomas E Helser

Applications of Fourier transform near infrared (FT-NIR) spectroscopy in fisheries science are currently limited. This current analysis of otolith spectral data demonstrate the potential applicability of FT-NIR spectroscopy to otolith chemistry and spatial variability in fisheries science. The objective of this study was to examine the use of NIR spectroscopy as a tool to differentiate among marine fishes in four large marine ecosystems. We examined otoliths from 13 different species, with three of these species coming from different regions. Principal component analysis described the main directions along which the specimens were separated. The separation of species and their ecosystems may suggest interactions between fish phylogeny, ontogeny, and environmental conditions that can be evaluated using NIR spectroscopy. In order to discriminate spectra across ecosystems and species, four supervised classification model techniques were utilized: soft independent modelling of class analogies, support vector machine discriminant analysis, partial least squares discriminant analysis, and k-nearest neighbor analysis (KNN). This study showed that the best performing model to classify combined ecosystems, all four ecosystems, and species was the KNN model, which had an overall accuracy rate of 99.9%, 97.6%, and 91.5%, respectively. Results from this study suggest that further investigations are needed to determine applications of NIR spectroscopy to otolith chemistry and spatial variability.


1988 ◽  
Vol 42 (7) ◽  
pp. 1273-1284 ◽  
Author(s):  
Tomas Isaksson ◽  
Tormod Næs

Near-infrared (NIR) reflectance spectra of five different food products were measured. The spectra were transformed by multiplicative scatter correction (MSC). Principal component regression (PCR) was performed, on both scatter-corrected and uncorrected spectra. Calibration and prediction were performed for four food constituents: protein, fat, water, and carbohydrates. All regressions gave lower prediction errors (7–68% improvement) by the use of MSC spectra than by the use of uncorrected absorbance spectra. One of these data sets was studied in more detail to clarify the effects of the MSC, by using PCR score, residual, and leverage plots. The improvement by using nonlinear regression methods is indicated.


Sign in / Sign up

Export Citation Format

Share Document