Nondestructive Discrimination of Grape Seed Varieties Using UV-VIS-NIR Spectroscopy and Chemometrics

2012 ◽  
Vol 236-237 ◽  
pp. 89-94 ◽  
Author(s):  
Hai Qing Yang ◽  
Wei Qiang Luo ◽  
Wen Jing Wang

Classification of grape seed species is a useful tool to obtain seeds with desired quality traits. This study aimed at rapidly and nondestructively discriminating four varieties of grape seeds using ultra violet, visible and near infrared (UV-VIS-NIR) spectroscopy with wavelength range of 210­1100 nm. A hundred twenty grape seed samples were divided for calibration (n=80) and validation (n=40). The spectra were subjected to a principal component analysis (PCA) with the leading 10 principal components (PCs) used to build calibration models. The obtained PCs were treated by linear discriminant analysis (LDA), artificial neural network (ANN) and support vector machine (SVM) to build various discrimination models. Validation results showed that the PC-LDA model developed for the full range of UV-VIS-NIR achieved better performance than those developed for partial wavelengths, i.e. UV, VIS, NIR, UV-VIS, and VIS-NIR. The PC-LDA model with 8 PCs achieved best performance with 100% discrimination accuracy. This experiment suggests that the UV-VIS-NIR spectroscopy coupled with PC-LDA calibration method is promising for the nondestructive discrimination of grape seed varieties.

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Hao Zhang ◽  
Haifeng Sun ◽  
Ling Wang ◽  
Shun Wang ◽  
Wei Zhang ◽  
...  

The aim of this work is to identify the adulteration of edible gelatin using near-infrared (NIR) spectroscopy combined with supervised pattern recognition methods. The spectral data obtained from a total of 144 samples consisting of six kinds of adulterated gelatin gels with different mixture ratios were processed with multiplicative scatter correction (MSC), Savitzky–Golay (SG) smoothing, and min-max normalization. Principal component analysis (PCA) was first carried out for spectral analysis, while the six gelatin categories could not be clearly distinguished. Further, linear discriminant analysis (LDA), soft independent modelling of class analogy (SIMCA), backpropagation neural network (BPNN), and support vector machine (SVM) were introduced to establish discrimination models for identifying the adulterated gelatin gels, which gave a total correct recognition rate of 97.44%, 100%, 97.44%, and 100%, respectively. For the SIMCA model with significant level α = 0.05, sample overlapping clustering appeared; thus, the SVM model presents the best recognition ability among these four discrimination models for the classification of edible gelatin adulteration. The results demonstrate that NIR spectroscopy combined with unsupervised pattern recognition methods can quickly and accurately identify edible gelatin with different adulteration levels, providing a new possibility for the detection of industrial gelatin illegally added into food products.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Hui Chen ◽  
Zan Lin ◽  
Chao Tan

Near-infrared (NIR) spectroscopy technique offers many potential advantages as tool for biomedical analysis since it enables the subtle biochemical signatures related to pathology to be detected and extracted. In conjunction with advanced chemometrics, NIR spectroscopy opens the possibility of their use in cancer diagnosis. The study focuses on the application of near-infrared (NIR) spectroscopy and classification models for discriminating colorectal cancer. A total of 107 surgical specimens and a corresponding NIR diffuse reflection spectral dataset were prepared. Three preprocessing methods were attempted and least-squares support vector machine (LS-SVM) was used to build a classification model. The hybrid preprocessing of first derivative and principal component analysis (PCA) resulted in the best LS-SVM model with the sensitivity and specificity of 0.96 and 0.96 for the training and 0.94 and 0.96 for test sets, respectively. The similarity performance on both subsets indicated that overfitting did not occur, assuring the robustness and reliability of the developed LS-SVM model. The area of receiver operating characteristic (ROC) curve was 0.99, demonstrating once again the high prediction power of the model. The result confirms the applicability of the combination of NIR spectroscopy, LS-SVM, PCA, and first derivative preprocessing for cancer diagnosis.


2021 ◽  
pp. 096703352098731
Author(s):  
Adenilton C da Silva ◽  
Lívia PD Ribeiro ◽  
Ruth MB Vidal ◽  
Wladiana O Matos ◽  
Gisele S Lopes

The use of alcohol-based hand sanitizers is recommended as one of several strategies to minimize contamination and spread of the COVID-19 disease. Current reports suggest that the virucidal potential of ethanol occurs at concentrations close to 70%. Traditional methods of verifying the ethanol concentration in such products invite potential errors due to the viscosity of chemical components or may be prohibitively expensive to undertake in large demand. Near infrared (NIR) spectroscopy and chemometrics have already been used for the determination of ethanol in other matrices and present an alternative fast and reliable approach to quality control of alcohol-based hand sanitizers. In this study, a portable NIR spectrometer combined with classification chemometric tools, i.e., partial least square discriminant analysis (PLS–DA) and linear discriminant analysis with successive algorithm projection (SPA–LDA) were used to construct models to identify conforming and non-conforming commercial and laboratory synthesized hand sanitizer samples. Principal component analysis (PCA) was applied in an exploratory data study. Three principal components accounted for 99% of data variance and demonstrate clustering of conforming and non-conforming samples. The PLS–DA and SPA–LDA classification models presented 77 and 100% of accuracy in cross/internal validation respectively and 100% of accuracy in the classification of test samples. A total of 43% commercial samples evaluated using the PLS–DA and SPA–LDA presented ethanol content non-conforming for hand sanitizer gel. These results indicate that use of NIR spectroscopy and chemometrics is a promising strategy, yielding a method that is fast, portable, and reliable for discrimination of alcohol-based hand sanitizers with respect to conforming and non-conforming ethanol concentrations.


2020 ◽  
Vol 28 (4) ◽  
pp. 224-235
Author(s):  
Irina M Benson ◽  
Beverly K Barnett ◽  
Thomas E Helser

Applications of Fourier transform near infrared (FT-NIR) spectroscopy in fisheries science are currently limited. This current analysis of otolith spectral data demonstrate the potential applicability of FT-NIR spectroscopy to otolith chemistry and spatial variability in fisheries science. The objective of this study was to examine the use of NIR spectroscopy as a tool to differentiate among marine fishes in four large marine ecosystems. We examined otoliths from 13 different species, with three of these species coming from different regions. Principal component analysis described the main directions along which the specimens were separated. The separation of species and their ecosystems may suggest interactions between fish phylogeny, ontogeny, and environmental conditions that can be evaluated using NIR spectroscopy. In order to discriminate spectra across ecosystems and species, four supervised classification model techniques were utilized: soft independent modelling of class analogies, support vector machine discriminant analysis, partial least squares discriminant analysis, and k-nearest neighbor analysis (KNN). This study showed that the best performing model to classify combined ecosystems, all four ecosystems, and species was the KNN model, which had an overall accuracy rate of 99.9%, 97.6%, and 91.5%, respectively. Results from this study suggest that further investigations are needed to determine applications of NIR spectroscopy to otolith chemistry and spatial variability.


Foods ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 450 ◽  
Author(s):  
Annalisa De Girolamo ◽  
Marina Cortese ◽  
Salvatore Cervellieri ◽  
Vincenzo Lippolis ◽  
Michelangelo Pascale ◽  
...  

Fourier transform near infrared (FT-NIR) spectroscopy, in combination with principal component-linear discriminant analysis (PC-LDA), was used for tracing the geographical origin of durum wheat samples. The classification model PC-LDA was applied to discriminate durum wheat samples originating from Northern, Central, and Southern Italy (n = 181), and to differentiate Italian durum wheat samples from those cultivated in other countries across the world (n = 134). Developed models were validated on a separated set of wheat samples. Different pre-treatments of spectral data and different spectral regions were selected and compared in terms of overall discrimination (OD) rates obtained in validation. The LDA models were able to correctly discriminate durum Italian wheat samples according to their geographical origin (i.e., North, Central, and South) with OD rates of up of 96.7%. Better results were obtained when LDA models were applied to the discrimination of Italian durum wheat samples from those originating from other countries across the world, having OD rates of up to 100%. The excellent results obtained herein clearly indicate the potential of FT-NIR spectroscopy to be used for the discrimination of durum wheat samples according to their geographical origin.


2014 ◽  
Vol 926-930 ◽  
pp. 961-964
Author(s):  
Jiao Jiao Yin

Because the reflectivity of astaxanthin vary in different bands (mainly 400nm-600nm), so we use the visible-near infrared spectra technique to irradiate the salmon. Because in daily life, people grade the salmon flesh with a color card. In this paper, we first use principal component analysis to reduce the dimensionality of the spectral data of salmon, then use linear discriminant analysis method, least squares support vector machine classification method to distinguish the flesh quality. The correct classification rates are 60%and73.3%. The results show that we can use visible – near infrared spectra to distinguish the quality of the salmon which doesn’t be dissected.


Foods ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1551
Author(s):  
Annalisa De Girolamo ◽  
Salvatore Cervellieri ◽  
Erminia Mancini ◽  
Michelangelo Pascale ◽  
Antonio Francesco Logrieco ◽  
...  

Italy is the country with the largest durum wheat pasta production and consumption. The mandatory labelling for pasta indicating the country of origin of wheat has made consumers more aware about the consumed pasta products and is influencing their choice towards 100% Italian wheat pasta. This aspect highlights the need to promote the use of domestic wheat as well as to develop rapid methodologies for the authentication of pasta. A rapid, inexpensive, and easy-to-use method based on infrared spectroscopy was developed and validated for authenticating pasta made with 100% Italian durum wheat. The study was conducted on pasta marketed in Italy and made with durum wheat cultivated in Italy (n = 176 samples) and on pasta made with mixtures of wheat cultivated in Italy and/or abroad (n = 185 samples). Pasta samples were analyzed by Fourier transform-near infrared (FT-NIR) spectroscopy coupled with supervised classification models. The good performance results of the validation set (sensitivity of 95%, specificity and accuracy of 94%) obtained using principal component-linear discriminant analysis (PC-LDA) clearly demonstrated the high prediction capability of this method and its suitability for authenticating 100% Italian durum wheat pasta. This output is of great interest for both producers of Italian pasta pointing toward authentication purposes of their products and consumer associations aimed to preserve and promote the typicity of Italian products.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Hui Chen ◽  
Zan Lin ◽  
Lin Mo ◽  
Tong Wu ◽  
Chao Tan

Cancer diagnosis is one of the most important tasks of biomedical research and has become the main objective of medical investigations. The present paper proposed an analytical strategy for distinguishing between normal and malignant colorectal tissues by combining the use of near-infrared (NIR) spectroscopy with chemometrics. The successive projection algorithm-linear discriminant analysis (SPA-LDA) was used to seek a reduced subset of variables/wavenumbers and build a diagnostic model of LDA. For comparison, the partial least squares-discriminant analysis (PLS-DA) based on full-spectrum classification was also used as the reference. Principal component analysis (PCA) was used for a preliminary analysis. A total of 186 spectra from 20 patients with partial colorectal resection were collected and divided into three subsets for training, optimizing, and testing the model. The results showed that, compared to PLS-DA, SPA-LDA provided more parsimonious model using only three wavenumbers/variables (4065, 4173, and 5758 cm−1) to achieve the sensitivity of 84.6%, 92.3%, and 92.3% for the training, validation, and test sets, respectively, and the specificity of 100% for each subset. It indicated that the combination of NIR spectroscopy and SPA-LDA algorithm can serve as a potential tool for distinguishing between normal and malignant colorectal tissues.


Holzforschung ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Te Ma ◽  
Tetsuya Inagaki ◽  
Satoru Tsuchikawa

AbstractAlthough visible and near-infrared (Vis-NIR) spectroscopy can rapidly and nondestructively identify wood species, the conventional spectrometer approach relies on the aggregate light absorption due to the chemical composition of wood and light scattering originating from the physical structure of wood. Hence, much of the work in this area is still limited to further spectral pretreatments, such as baseline correction and standard normal variate to reduce the light scattering effects. However, it should be emphasized that the light scattering rather than absorption in wood is dominant, and this must be effectively utilized to achieve highly accurate and robust wood classification. Here a novel method based on spatially resolved diffuse reflectance (wavelength range: 600–1000 nm) was demonstrated to classify 15 kinds of wood. A portable Vis-NIR spectral measurement system was designed according to previous simulations and experimental results. To simplify spectral data analysis (i.e., against overfitting), support vector machine (SVM) model was constructed for wood sample classification using principal component analysis (PCA) scores. The classification accuracies of 98.6% for five-fold cross-validation and 91.2% for test set validation were achieved. This study offers enhanced classification accuracy and robustness over other conventional nondestructive approaches for such various kinds of wood and sheds light on utilizing visible and short-wave NIR light scattering for wood classification.


2018 ◽  
Vol 11 (02) ◽  
pp. 1850005 ◽  
Author(s):  
Lijun Yao ◽  
Weiqun Xu ◽  
Tao Pan ◽  
Jiemei Chen

The moving-window bis-correlation coefficients (MW-BiCC) was proposed and employed for the discriminant analysis of transgenic sugarcane leaves and [Formula: see text]-thalassemia with visible and near-infrared (Vis–NIR) spectroscopy. The well-performed moving-window principal component analysis linear discriminant analysis (MW-PCA–LDA) was also conducted for comparison. A total of 306 transgenic (positive) and 150 nontransgenic (negative) leave samples of sugarcane were collected and divided to calibration, prediction, and validation. The diffuse reflection spectra were corrected using Savitzky–Golay (SG) smoothing with first-order derivative ([Formula: see text]), third-degree polynomial ([Formula: see text]) and 25 smoothing points ([Formula: see text]). The selected waveband was 736–1054[Formula: see text]nm with MW-BiCC, and the positive and negative validation recognition rates ([Formula: see text]_REC[Formula: see text], [Formula: see text]_REC[Formula: see text] were 100%, 98.0%, which achieved the same effect as MW-PCA–LDA. Another example, the 93 [Formula: see text]-thalassemia (positive) and 148 nonthalassemia (negative) of human hemolytic samples were collected. The transmission spectra were corrected using SG smoothing with [Formula: see text], [Formula: see text] and [Formula: see text]. Using MW-BiCC, many best wavebands were selected (e.g., 1116–1146, 1794–1848 and 2284–2342[Formula: see text]nm). The [Formula: see text]_REC[Formula: see text] and [Formula: see text]_REC[Formula: see text] were both 100%, which achieved the same effect as MW-PCA–LDA. Importantly, the BiCC only required calculating correlation coefficients between the spectrum of prediction sample and the average spectra of two types of calibration samples. Thus, BiCC was very simple in algorithm, and expected to obtain more applications. The results first confirmed the feasibility of distinguishing [Formula: see text]-thalassemia and normal control samples by NIR spectroscopy, and provided a promising simple tool for large population thalassemia screening.


Sign in / Sign up

Export Citation Format

Share Document