scholarly journals The Influence of a Thermal Treatment on the Decay Resistance of Wood via FTIR Analysis

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Yinan Hao ◽  
Yanfei Pan ◽  
Rui Du ◽  
Yamei Wang ◽  
Zhangjing Chen ◽  
...  

The decay resistance of wood can be improved via a vacuum heat treatment. The amount of nutrients from cellulose, hemicellulose, and lignin and amount of sugars needed by the fungi during their growth were investigated. The results showed that the absorbance peaks corresponding to absorbed CH3-CH2-, C=O, and the benzene ring skeleton stretching vibration all noticeably weakened with increased heat treatment. This indicated that the cellulose, hemicellulose, and lignin degraded to varying degrees. The specimens with a higher initial moisture content (MC) showed greater amounts of nutrient degradation after 2 h at the same heat treatment temperature. The chemical analysis results were in good agreement with the Fourier transform infrared (FTIR) analysis results. The decay resistance tests showed that the average mass loss of the heat-treated specimens was up to 10.8%, in contrast to 22.23% for the untreated specimens. Furthermore, the FTIR analysis of the heat and decay-resistance test showed that the vibration wave peaks that corresponded to CH3-CH2- at 2954 cm−1 showed noticeably less separation at higher heating temperature. This demonstrated that the cellulose hydrolysis in the wood decreased at higher heating temperatures, which explained why the decay resistance increased with increased heat treatment.

2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Zhezi Zhang ◽  
Mingming Zhu ◽  
Jianbo Li ◽  
Kai Zhang ◽  
Guoqing Shen ◽  
...  

In this study, the ignition and combustion behavior of raw and heat-treated single particles of lignite were experimentally investigated, with a focus on the effect of heat treatment temperatures. The lignite particles were heat treated to various final temperatures (473, 623 and 773 K) in nitrogen and characterized using proximate, ultimate, and Fourier transform infrared spectroscopy (FTIR) analysis. A single lignite particle of 2 or 3 mm in diameter was suspended on a silicon carbide fiber and burned in air in a horizontal tube furnace operating at 1123 K. The ignition and combustion process of the particle was record using a color CCD camera at 25 fps. The ignition mechanism, ignition delay time, volatile flame duration, and burnout time of the single particles were examined by processing the recorded images. The proximate and ultimate analysis results indicated that the volatile matter and oxygen contents decreased, while the carbon content increased with increasing temperature of heat treatment. This trend was consistent with observations in the FTIR analysis, in which the intensity of oxygen-containing functional groups decreased with increasing the heat treatment temperature. The ignition of raw and heat treated lignite particles followed a joint hetero-homogeneous mechanism under all conditions studied. The ignition delay time, volatile flame extinction time, and the total combustion time decreased with increasing heat treatment temperature up to 623 K. A further increase in the heat treatment temperature to 773 K resulted in prolonged key ignition and combustion characteristic times.


2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Xiaomeng Hao ◽  
Qiuyi Wang ◽  
Yihua Wang ◽  
Xin Han ◽  
Chenglong Yuan ◽  
...  

AbstractBamboo is now widely used in construction, papermaking, textile, furniture and other fields because of its renewable, fast-growing, high-strength, high-yield and easy processing. However, compared with wood, bamboo and bamboo products are more vulnerable to damage by fungi and pests. An effective and eco-friendly method is urgently needed to improve their physical and chemical properties, decay resistance and anti-mildew properties, and hydrophobic properties. Here, bamboo was heated with methyl silicone oil. The effect of different temperatures (140 °C–200 °C) and different times (2 h–6 h) on the properties of bamboo was studied systematically, including chemical composition, physical and mechanical properties, surface wettability, decay resistance and anti-mildew property. No starch granules were observed inside the parenchymal cell lumen of bamboo specimen heat treated at 200 °C for 6 h. And with the increase of heat treatment temperature and time, the content of cellulose and hemicellulose decreases gradually while relative content of lignin increases due to its better thermal stability. Accordingly, the surface wettability decreases due to the changes of the surface functional groups and micro-morphologies. Under the condition of oil heat treatment at 160 °C for 2 h, the compressive strength parallel to grain of bamboo samples reach the maximum of 109.52 MPa. With further increase of heating temperature, the corresponding compressive strength decreases. The resulted bending strength and MOE both display similar changing trend. However, the optimal parameter is at 180 °C for 2 h, with the highest bending strength and MOE values of 142.42 MPa and 12,373.00 MPa, respectively. Finally, the decay resistance and anti-mildew property are dramatically enhanced with increased heat treatment temperature and time. All the corresponding changing mechanisms are investigated in depth and in detail. Our results provide comprehensive process parameters and micro-mechanism for the performance of oil heat treatment of bamboo, which can be used to guide the actual production.


2021 ◽  
Vol 353 ◽  
pp. 01020
Author(s):  
Yan Xu ◽  
Yinglai Liu ◽  
Xianghui Nie ◽  
Zhenjun Feng ◽  
Liang Li ◽  
...  

During the welding of in-service pipeline, natural gas is continuously transported in the pipeline, which maintains a high gas pressure. Therefore, the welding process is completed under strong cooling conditions, and welding delay crack is easy to occur. Preheating before welding and heat treatment after welding can effectively control the hardened microstructure, reduce the residual stress and ensure the welding quality. In this study, the influence of heating temperature on the bearing capacity of high steel grade pipe during in-service welding repair was studied. The high temperature tensile test was used to simulate the bearing capacity of the pipe under heating and high temperature environment. It is found that when the heating temperature is below 400°C, the pipe strength remains at the original level. With the increase of heating temperature, when the test temperature is higher than 400°C, the yield strength and tensile strength of the pipe decrease significantly. When the test temperature is 450°C, the yield strength and tensile strength of the material decrease by 15.8% and 11.1%, respectively, compared with the normal temperature, which are lower than the pipe standard requirements. Therefore, it is suggested that when the heat treatment temperature is higher than 400°C during in-service welding repair, it is necessary to consider reducing the pipeline pressure. At the same time, the box furnace heat treatment method was adopted to heat treat the pipe, and the tensile properties of the pipe after heat treatment were tested to analyze the bearing capacity of the pipe after heat treatment. It is found that when the heating temperature is higher than 700°C, the tensile properties of high grade pipeline steel pipe decrease sharply. It is suggested that when the heat treatment temperature is higher than 700°C, the risk assessment of the service safety of the heat treated pipeline should be carried out.


2020 ◽  
Vol 840 ◽  
pp. 551-557
Author(s):  
Greitta Kusuma Dewi ◽  
Ragil Widyorini ◽  
Ganis Lukmandaru

Ammonium dihydrogen phosphate (ADP) is expected to be an effective catalyst to increase the water-resistance and hasten the curing speed of maltodextrin as wood adhesives. This research investigated the effect of ADP addition on the curing maltodextrin properties. The ratio of maltodextrin/ADP was 100/0 and 90/10 wt%. The heat treatment was 180-220 °C for 10 min. The water-resistance improvement and the chemical changes were analyzed using insoluble matter rate against boiling water and Fourier Transform Infrared (FTIR) analysis, respectively. The thermal behavior of the dried mixture of adhesives was also analyzed through differential scanning calorimetry (DSC) analysis at room temperature until 400 °C. The results showed that the water-resistance properties of maltodextrin increased with the addition of 10 wt% ADP and increasing the heating temperature. FTIR analysis detected a high water-resistant substance of furan in the adhesives with maltodextrin/ADP ratio 90/10 wt% and heat treatment of 220 °C for 10 min. DSC analysis showed that ADP addition can hasten the reaction of maltodextrin as the endotherm peak temperature was shifted from 272 to 204 °C.


2019 ◽  
Vol 11 (12) ◽  
pp. 1723-1730 ◽  
Author(s):  
Jun Feng Hu ◽  
Xi Deng ◽  
Yong Yang ◽  
Zhou Chen

A silicon carbide whisker (SiCw) reinforced silicon nitride (Si3N4) composite ceramic was selected to study the crack-healing performance. Pre-cracks of various length were introduced on the tensile side of specimens by Vickers hardness tester. The crack-healing performance as a function of heating temperature and crack dimension, as well as the crack-healing mechanism were investigated. The optimal heat treatment temperature for crack-healing of Si3N4/SiCw is 1200–1300 °C. The treatment allows complete healing of a crack of 200 μm after heat treated at 1300 °C, and achievement of a substantial strength recovery for pre-cracked specimens even with much longer cracks (1200 μm). Crack closure and strength recovery of the pre-cracked specimen were considered to be triggered by the creation of SiO2, liquid aluminosilicate glass and silicon yttrium oxide by the oxidation reaction as filling mechanism during heat treatment.


2013 ◽  
Vol 27 (10) ◽  
pp. 1079-1083
Author(s):  
Zhao-Hui LIU ◽  
Gen-Liang HOU ◽  
Xun-Jia SU ◽  
Feng GUO ◽  
Zhou XIAO ◽  
...  

2018 ◽  
Vol 69 (5) ◽  
pp. 1055-1059 ◽  
Author(s):  
Mariana Ciurdas ◽  
Ioana Arina Gherghescu ◽  
Sorin Ciuca ◽  
Alina Daniela Necsulescu ◽  
Cosmin Cotrut ◽  
...  

Aluminium bronzes are exhibiting good corrosion resistance in saline environments combined with high mechanical properties. Their corrosion resistance is obviously confered by the alloy chemical composition, but it can also be improved by heat treatment structural changes. In the present paper, five Cu-Al-Fe-Mn bronze samples were subjected to annealing heat treatments with furnace cooling, water quenching and water quenching followed by tempering at three different temperatures: 200, 400 and 550�C. The heating temperature on annealing and quenching was 900�C. The structure of the heat treated samples was studied by optical and scanning electron microscopy. Subsequently, the five samples were submitted to corrosion tests. The best resistance to galvanic corrosion was showed by the quenched sample, but it can be said that all samples are characterized by close values of open-circuit potentials and corrosion potentials. Concerning the susceptibility to other types of corrosion (selective leaching, pitting, crevice corrosion), the best corrosion resistant structure consists of a solid solution, g2 and k compounds, corresponding to the quenched and 550�C tempered sample.


2020 ◽  
Vol 15 (1) ◽  
pp. 606-618 ◽  
Author(s):  
Dani Dordevic ◽  
Ivan Kushkevych ◽  
Simona Jancikova ◽  
Sanja Cavar Zeljkovic ◽  
Michal Zdarsky ◽  
...  

AbstractThe aim of this study was to simulate olive oil use and to monitor changes in the profile of fatty acids in home-made preparations using olive oil, which involve repeated heat treatment cycles. The material used in the experiment consisted of extra virgin and refined olive oil samples. Fatty acid profiles of olive oil samples were monitored after each heating cycle (10 min). The outcomes showed that cycles of heat treatment cause significant (p < 0.05) differences in the fatty acid profile of olive oil. A similar trend of differences (p < 0.05) was found between fatty acid profiles in extra virgin and refined olive oils. As expected, the main differences occurred in monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs). Cross-correlation analysis also showed differences between the fatty acid profiles. The most prolific changes were observed between the control samples and the heated (at 180°C) samples of refined olive oil in PUFAs, though a heating temperature of 220°C resulted in similar decrease in MUFAs and PUFAs, in both extra virgin and refined olive oil samples. The study showed differences in fatty acid profiles that can occur during the culinary heating of olive oil. Furthermore, the study indicated that culinary heating of extra virgin olive oil produced results similar to those of the refined olive oil heating at a lower temperature below 180°C.


2009 ◽  
Vol 18 (12) ◽  
pp. 935-938
Author(s):  
H. Kobori ◽  
T. Asahi ◽  
Y. Yamasaki ◽  
A. Sugimura ◽  
T. Taniguchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document