Effect of Ammonium Dihydrogen Phosphate (ADP) Addition as Catalyst on the Curing Maltodextrin Adhesives Properties

2020 ◽  
Vol 840 ◽  
pp. 551-557
Author(s):  
Greitta Kusuma Dewi ◽  
Ragil Widyorini ◽  
Ganis Lukmandaru

Ammonium dihydrogen phosphate (ADP) is expected to be an effective catalyst to increase the water-resistance and hasten the curing speed of maltodextrin as wood adhesives. This research investigated the effect of ADP addition on the curing maltodextrin properties. The ratio of maltodextrin/ADP was 100/0 and 90/10 wt%. The heat treatment was 180-220 °C for 10 min. The water-resistance improvement and the chemical changes were analyzed using insoluble matter rate against boiling water and Fourier Transform Infrared (FTIR) analysis, respectively. The thermal behavior of the dried mixture of adhesives was also analyzed through differential scanning calorimetry (DSC) analysis at room temperature until 400 °C. The results showed that the water-resistance properties of maltodextrin increased with the addition of 10 wt% ADP and increasing the heating temperature. FTIR analysis detected a high water-resistant substance of furan in the adhesives with maltodextrin/ADP ratio 90/10 wt% and heat treatment of 220 °C for 10 min. DSC analysis showed that ADP addition can hasten the reaction of maltodextrin as the endotherm peak temperature was shifted from 272 to 204 °C.

2021 ◽  
Vol 891 (1) ◽  
pp. 012004
Author(s):  
G K Dewi ◽  
R Widyorini ◽  
G Lukmandaru

Abstract Maltodextrin is a new saccharide-based adhesive that can be potentially developed as an alternative for particleboard due to its abundant resources. The addition of ammonium dihydrogen phosphate (ADP) was expected to be able to improve the properties of the maltodextrin, especially the water resistance of the cured adhesive. This study aimed to investigate the properties of maltodextrin/ADP adhesive in the ratios of 100/0, 90/10 and 80/20 wt%. The results showed that the increasing ratio of ADP in maltodextrin-based adhesive can increase not only the insoluble matter rate during boiling condition, but also the other adhesive properties of maltodextrin by lowering the viscosity and increasing the wettability tested in salacca frond particles. The pH adhesive decreased along with the increased ADP ratio. Oneway analysis of variance and Tukey test showed that the maltodextrin/ADP ratios significantly affected the adhesive properties. The thermogravimetric analysis (TGA) of dried mixture adhesive showed the significant changes in the onset and the highest weight reduction temperature of maltodextrin after the ADP addition. The FTIR analysis detected some new peaks that were expected to be related to furan ring and carbonyl groups after the maltodextrin/ADP 90/10 and 80/20 wt% were heated at 200°C for 10 minutes and/or 15 minutes. Maltodextrin/ADP 80/20 wt% had the best adhesive properties for particleboard application.


2012 ◽  
Vol 488-489 ◽  
pp. 506-510 ◽  
Author(s):  
Sikander Rafiq ◽  
Zakaria Man ◽  
Abdulhalim Maulud ◽  
Nawshad Muhammad ◽  
Saikat Maitra

Composite membranes were prepared by incorporating inorganic silica nanoparticles into blends of polysulfone/polyimide (PSF/PI) membranes via sol-gel route. Morphological structures of the developed membranes were carried out by scanning electron microscopy (SEM). Spectroscopic analysis of the hybrid membranes were done by fourier transform infrared spectroscopy (FTIR) analysis. Differential scanning calorimetry (DSC) analysis shows that the glass transition temperature (Tg) increased from 209oC to 238oC in the hybrid membranes followed by thermogravimetric analysis (TGA) that showed significant improvement in thermal stability of the developed membranes.


2021 ◽  
Vol 39 (No. 5) ◽  
pp. 360-367
Author(s):  
Achmat Sarifudin ◽  
Enny Sholichah ◽  
Woro Setiaboma ◽  
Nok Afifah ◽  
Dewi Desnilasari ◽  
...  

Native cassava flour can be modified to be instant flour by heating the cassava flour in ethanol solution. The impact of heating temperatures of 60, 80, and 100 °C (coded as ICF-60, ICF-80, and ICF-100) on the properties of instant cassava flour (ICF), including colour, morphological, and thermal properties, water absorption, and solubility indexes and pasting behaviour, were investigated. Results showed that ICF produced at higher temperatures exhibited lower lightness, higher redness, and yellowness values. ICF-60 and ICF-80 still displayed the granular forms and birefringence properties of native starches, while granules of ICF-100 were broken and partially lost their birefringence properties. Results of X-ray diffraction (XRD) technique and differential scanning calorimetry (DSC) analysis suggested that the amylopectin double helixes of crystalline regions within the structure of ICF orientated to more perfect conformation before they were disrupted at the highest heating temperature (100 °C). During hydration, the starch granules of ICF-60 and ICF-80 absorbed water into their granules; meanwhile, ICF-100 entrapped water within the matrix formed by the entanglements of ICF-100 particles. Results of pasting behaviour analysis indicated that ICF-60 and ICF-80 showed better thermal stability while ICF-100 exhibited the highest cold viscosity.


2014 ◽  
Vol 1053 ◽  
pp. 438-443
Author(s):  
Jian Yong Liu ◽  
Jie Wang ◽  
Hao Ming Li

In this paper, the wool was pretreated by TCEP (Tris (2-carboxyethyl) phosphine) a certain time, and then prepared wool keratin powder by mechanical lapping. The characteristics of the keratin powder carried out by Fourier transform infrared (FTIR) and Differential scanning calorimetry (DSC). From the FTIR analysis, TCEP first role in α-helical structure of wool, making its decline, and then acting on β-sheet. From the DSC analysis, the melting peak temperature of α-crystalline with the time of TCEP effect on wool, presenting the trend of first increased and then drophave. Dissolved the keratin powder in 88% formic acid, then keratin films were maded.The characteristics of the keratin films were measured, the moisture content of keratin film increases with the time of wool treated with TCEP. And the dissolution rate and ultimate strength in line with the change of FTIR and DSC analysis results.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Yinan Hao ◽  
Yanfei Pan ◽  
Rui Du ◽  
Yamei Wang ◽  
Zhangjing Chen ◽  
...  

The decay resistance of wood can be improved via a vacuum heat treatment. The amount of nutrients from cellulose, hemicellulose, and lignin and amount of sugars needed by the fungi during their growth were investigated. The results showed that the absorbance peaks corresponding to absorbed CH3-CH2-, C=O, and the benzene ring skeleton stretching vibration all noticeably weakened with increased heat treatment. This indicated that the cellulose, hemicellulose, and lignin degraded to varying degrees. The specimens with a higher initial moisture content (MC) showed greater amounts of nutrient degradation after 2 h at the same heat treatment temperature. The chemical analysis results were in good agreement with the Fourier transform infrared (FTIR) analysis results. The decay resistance tests showed that the average mass loss of the heat-treated specimens was up to 10.8%, in contrast to 22.23% for the untreated specimens. Furthermore, the FTIR analysis of the heat and decay-resistance test showed that the vibration wave peaks that corresponded to CH3-CH2- at 2954 cm−1 showed noticeably less separation at higher heating temperature. This demonstrated that the cellulose hydrolysis in the wood decreased at higher heating temperatures, which explained why the decay resistance increased with increased heat treatment.


2020 ◽  
Vol 66 (1) ◽  
Author(s):  
Zhongyuan Zhao ◽  
Di Wu ◽  
Caoxing Huang ◽  
Min Zhang ◽  
Kenji Umemura ◽  
...  

AbstractIn this study, further research on an enzymatic hydrolysate-ammonium dihydrogen phosphate (EHADP) adhesive was carried out. Appropriate hot pressing conditions were clarified by measuring the bond strength of three-ply plywood bonded with EHADP adhesive, and the results indicated that the appropriate fabricate conditions were 170 °C and 5 min. The value of wet shear strength fulfilled the requirements of China National Standard GB/T 9846–2015 when plywood was fabricated by the appropriate conditions. In the research of curing behavior, the insoluble mass proportion promoted significantly as heating temperature and time were ≥ 170 °C and 5 min. Furthermore, a pyrolysis gas chromatography/mass spectrometry analysis indicated that adding ammonium dihydrogen phosphate (ADP) catalyzed the conversion of monosaccharides in the EHADP adhesive. The adhesion mechanism of the EHADP adhesive was studied by Fourier transform-infrared spectroscopy analysis, and the chemical changes indicated that the adhesion mechanism was attributed to both mechanical and chemical bonding between the wood elements and the cured EHADP adhesive.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 350 ◽  
Author(s):  
Rana Sammour ◽  
Muhammad Taher ◽  
Bappaditya Chatterjee ◽  
Aliasgar Shahiwala ◽  
Syed Mahmood

In the contemporary medical model world, the proniosomal system has been serving as a new drug delivery system that is considered to significantly enhance the bioavailability of drugs with low water solubility. The application of this system can improve the bioavailability of aceclofenac that is used for the relief of pain and inflammation in osteoarthritis, rheumatoid arthritis, and ankylosing spondylitis. The present study is intended to develop an optimized proniosomal aceclofenac formula by the use of different carriers. Aceclofenac proniosomes have been prepared by slurry method, and different carriers such as maltodextrin, mannitol, and glucose were tried. Prepared proniosomes characterized by differential scanning calorimetry (DSC) analysis and Fourier transform infrared (FTIR) analysis revealed the compatibility of the drug chosen with the ingredient added, powder X-ray diffractometry (XRD) confirmed the amorphous phase of the prepared proniosomes, and finally, the surfactant layer was observed by scanning electron microscopy (SEM). Aceclofenac physical state transformations were confirmed with all formulas but maltodextrin proniosomes exhibited solubility more than other formulations. HPLC method has been used to analyze the niosomes derived from proniosomes in terms of their entrapment capability and drug content. The obtained results revealed that aceclofenac proniosomes can be successfully prepared by using different carriers.


2019 ◽  
Vol 97 ◽  
pp. 02021
Author(s):  
Nurmuhamat Asatov ◽  
Mirjalol Tillayev ◽  
Navruzbek Raxmonov

One of the effective methods of land irrigation in the Republic of Uzbekistan is carried out with the help of precast reinforced concrete trays of irrigation systems. In the process of operation, precast concrete trays are influenced by difficult operating conditions. As is known, to achieve high water resistance and concrete strength after heat treatment, it is necessary to take into account such factors as pre-exposure time, temperature rise rate, and isothermal warm-up time. However, the determining factor that has the greatest impact on the water resistance of concrete during heat treatment is the duration of the preliminary exposure and the rate of temperature rise, on which the values of internal stresses in concrete depend on heating. The paper gives the results of scientific research, which, being based on the studies of heat and moisture treatment of concrete in a laboratory steam chamber with automatic control of the regime. Scientific methods and techniques were used in the process of data processing and study findings: systematic approach, methods of system analysis and mathematical statistics. To determine the strength of concrete, cubic samples were made with dimensions of 100×100×100 mm, which were tested at the period of 1,3,7,28 days. After HMT compared with similar characteristics of normal hardening samples. The results of studies of the kinetics of increase in concrete strength depending on the heat treatment regimes are shown in the paper, that, despite the slight difference in the duration of the preliminary curing (1 and 2 hours), there is still a certain difference between them. The scientific novelty lies in the formulation, formalization and solving problems related to water resistance, frost resistance, and at the same time saves heat and power resources of trays.


Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1251 ◽  
Author(s):  
Zhongyuan Zhao ◽  
Shin Hayashi ◽  
Wei Xu ◽  
Zhihui Wu ◽  
Soichi Tanaka ◽  
...  

Development of a bio-based wood adhesive is a significant goal for several wood-based material industries. In this study, a novel adhesive based upon sucrose and ammonium dihydrogen phosphate (ADP) was formulated in hopes of furthering this industrial goal through realization of a sustainable adhesive with mechanical properties and water resistance comparable to the synthetic resins used today. Finished particleboards exhibited excellent mechanical properties and water resistance at the revealed optimal adhesive conditions. In fact, the board properties fulfilled in principle the requirements of JIS A 5908 18 type standard, however this occured at production conditions for the actual state of development as reported here, which are still different to usual industrial conditions. Thermal analysis revealed addition of ADP resulted in decreases to the thermal thresholds associated with degradation and curing of sucrose. Spectral results of FT-IR elucidated that furanic ring chemistry was involved during adhesive curing. A possible polycondensation reaction pathway was proposed from this data in an attempt to explain why the adhesive exhibited such favorable bonding properties.


2015 ◽  
Vol 30 (8) ◽  
pp. 1157-1172 ◽  
Author(s):  
Nevin Gamze Karsli

The aim of this study is to simultaneously improve the mechanical strength and fracture toughness properties of recycled poly(ethylene terephthalate) (r-PET). For this purpose, Joncryl® was used as chain extender and Lotader® was used as impact modifier. The combined effect of chain extender and impact modifier on the chemical, fractural, mechanical, and thermal properties of r-PET was investigated. Fourier transformed infrared spectroscopy (FTIR) analysis, EWF analysis, tensile test, and differential scanning calorimetry (DSC) analysis were performed. FTIR analysis revealed that all the epoxy groups in the Joncryl® were consumed during the compounding. EWF results showed that while toughness of r-PET decreased with the addition of Joncryl®, toughness was increased with addition of impact modifier Lotader®. It was found that 2.5% Lotader® usage at the same time with Joncryl® increased the tensile strength of r-PET as well as toughness. It was observed from DSC analysis that chain extender and impact modifier addition did not change the thermal transition temperatures of r-PET.


Sign in / Sign up

Export Citation Format

Share Document