scholarly journals NOMA for Multinumerology OFDM Systems

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Ayman T. Abusabah ◽  
Huseyin Arslan

Nonorthogonal multiple access (NOMA) is a promising technique which outperforms the traditional multiple access schemes in many aspects. It uses superposition coding (SC) to share the available resources among the users and adopts successive interference cancelation (SIC) for multiuser detection (MUD). Detection is performed in power domain where fairness can be supported through appropriate power allocation. Since power domain NOMA utilizes SC at the transmitter and SIC at the receiver, users cannot achieve equal rates and experience higher interference. In this paper, a novel NOMA scheme is proposed for multinumerology orthogonal frequency division multiplexing system, that is, different subcarrier spacings. The scheme uses the nature of mixed numerology systems to reduce the constraints associated with the MUD operation. This scheme not only enhances the fairness among the users but improves the bit error rate performance as well. Although the proposed scheme is less spectrally efficient than conventional NOMA schemes, it is still more spectrally efficient than orthogonal multiple access schemes.

Author(s):  
E. Alwin Richard

Recent advancements in communication systems have resulted in a new class of multiple access schemes known as non-orthogonal multiple access (NOMA), the primary goal of which is to increase spectrum efficiency by overlapping data from different users in a single time-frequency resource used by the physical layer. NOMA receivers can resolve interference between data symbols from various users, hence increasing throughput. Initially, the combination of SCMA and orthogonal frequency division multiplexing (OFDM) is addressed, establishing a baseline for the overall SER performance of the multiple access strategy. Furthermore, this work suggests the merging of SCMA with generalised frequency division multiplexing (GFDM).GFDM is an intriguing possibility for future wireless communication systems since it is a very flexible non-orthogonal waveform that can imitate various different waveforms as corner cases. This research suggests two methods for integrating SCMA with GFDM.


Author(s):  
Ahmed Talaat Hammoodi ◽  
Farooq Sijal Shawqi ◽  
Lukman Audaha ◽  
Abdullah Ali Qasim ◽  
Ammar Ahmed Falih

In this study, filtered orthogonal frequency division multiplexing (F-OFDM) and universal filtered multicarrier (UFMC) were proposed for complexity reduction in the 5G waveform. Cyclic prefix orthogonal frequency division multiplexing (CP_OFDM) is well suited for 4G; however, the major problem of the 4G modulation methods is their susceptibility to high peak to average power ratio (PAPR). Another problem of OFDM is the issue of sideband leakage. The existing 4G systems mainly depend on the CP_OFDM waveform, which cannot support the host of applications provided by the 5G platform. 5G-generated traffic is likely to exhibit different features and requirements compared to the existing wireless technology. Consequently, investigations have been devoted to other multiple access schemes. The existing limitations of OFDM can be mitigated by using the UFMC technique. To ensure that the demands and requirements of the upcoming 5G cellular networks are satisfied, this study presents an enabler called filtered-OFDM (f-OFDM) for flexible waveform configurations. Contrarily, the assigned bandwidth in the f-OFDM is split into various sub-bands to accommodate different services in each sub-band using the most suited waveform, thereby enhancing the spectrum utilization using a different filter. Additionally, the advantages of F-OFDM and UFMC were portrayed via a wide comparison with the current 5G waveforms.


2015 ◽  
Vol 24 (05) ◽  
pp. 1550061
Author(s):  
Mateus de Paula Marques ◽  
Taufik Abrão

This paper addresses the optimization problem on subcarrier and power allocation of orthogonal frequency division multiple access (OFDMA) system under spectral efficiency (SE) metric when deploying superposition coding (SC) transmission strategy. An algorithm with polynomial time complexity, of the order of (UN log 2(N)) has been proposed for sub-optimal SE maximization. Results indicate that the system SE increases with the use of SC technique. Besides, the throughput gain with SC adoption increases when the number of users (U) approaches the number of subcarriers (N) available in the system.


An analysis on Spectrally Efficient Frequency Division Multiplexing (SEFDM) is contrast with Orthogonal Frequency Division Multiplexing (OFDM) considering the impact on Peak to Average Power Ratio (PAPR) and nonlinearities within fibre. With respect to OFDM the sub-carriers in SEFDM signals are compressed adjacent to each other at a rate of frequency lesser than the symbol rate. At the receiver end we have utilized the Sphere Decoder which is used to recover the data to remunerate the Interference created by the compressed signals (ICI) faced in the system. This research shows the advantages by using SEFDM and evaluates its achievement. PAPR. when compared with OFDM, while effects of non-linear fibres are considered. The use of various formats of modulation going from 4-QAM to 32-QAM, shows that the SEFDM signals have a noteworthy increment in the transmission length with respect to ordinary signals.


2021 ◽  
Author(s):  
Kanchana Devi A ◽  
Bhuvaneswari B

In this modern Communication Wireless System, Frequency Division Duplex (FDD) is mostly used. Duplex is a device to separate Transmitter and Receiver signals. Transmitter or Power leakage causes from limited isolation performance of the duplexer. Various Techniques of Modulation using Orthogonal Frequency Division Multiplexing (OFDM) provided better solution to cancel this leakage. The OFDM provides high spectral efficiency, lower multi-path distortion and to eliminate inter symbol interference (ISI). Fast Fourier Transform implemented modulation and demodulation functions more efficiently. Using simulation result of the various parameters are analysed. In addition, Comparison of the table between Bit rate error value, Signal strength throughput, Power consumption and Mean square error values obtained in the OFDM systems.


Author(s):  
PRITANJALI KUMARI ◽  
US TRIAR

Orthogonal Frequency Division Multiplexing (OFDM), widely used in digital wireless communication, has a major drawback of high Peak to Average Power Ratio (PAPR). A reduced complexity partial transmit sequence (PTS) scheme has been proposed to solve high peak to average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) system. In the proposed PTS scheme, a function is generated by summing the power of time domain samples at time ‘n’ in each sub blocks, known as “Hn”.Only those samples, having Hn greater than or equal to a preset threshold value (αT) are used for peak power calculation during the process of selecting a candidate signal with the lowest PAPR for transmission. As compared to conventional PTS scheme, the proposed scheme achieves almost the same PAPR reduction performance with much lower computational complexity.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Saruti Gupta ◽  
Ashish Goel

Abstract The main drawback in the performance of the Orthogonal Frequency Division Multiplexing (OFDM) system is the higher Peak-to-Average Power Ratio (PAPR) of the OFDM signals at the transmitter side. Companding is a well-known technique useful for reducing PAPR in the OFDM signal. This paper proposes a new nonlinear companding scheme that transforms the magnitude of Rayleigh distributed OFDM signal of specific degree into trapezoidal distribution. Additional design parameter is used in the proposed companding scheme to make the companding function more flexible. In the designed OFDM system the companding function has more degree of freedom which improves the PAPR and bit error rate (BER) parameters of the designed system. It has been demonstrated that the designed companding scheme provides more flexibility to accomplish an optimum trade-off between the performance parameters PAPR and BER of the designed OFDM system.


Information ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 190 ◽  
Author(s):  
Brahim Bakkas ◽  
Reda Benkhouya ◽  
Idriss Chana ◽  
Hussain Ben-Azza

Orthogonal frequency division multiplexing (OFDM) is the key technology used in high-speed communication systems. One of the major drawbacks of OFDM systems is the high peak-to-average power ratio (PAPR) of the transmitted signal. The transmitted signal with a high PAPR requires a very large linear range of the Power Amplifier (PA) on the transmitter side. In this paper, we propose and study a new clipping method named Palm Clipping (Palm date leaf) based on hyperbolic cosine. To evaluate and analyze its performance in terms of the PAPR and Bit Error Rate (BER), we performed some computer simulations by varying the Clipping Ratio (CR) and modulation schemes. The obtained results show that it is possible to achieve a gain of between 7 and 9 dB in terms of PAPR reduction depending on the type of modulation. In addition, comparison with several techniques in terms of PAPR and BER shows that our method is a strong alternative that can be adopted as a PAPR reduction technique for OFDM-based communication systems.


Sign in / Sign up

Export Citation Format

Share Document