scholarly journals Complexity Analysis of a Mixed Memristive Chaotic Circuit

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaolin Ye ◽  
Jun Mou ◽  
Chunfeng Luo ◽  
Feifei Yang ◽  
Yinghong Cao

In this paper, we design a chaotic circuit with memristors, which consists of two flux-controlled memristors and a charge-controlled memristor, and the dimensionless mathematical model of the circuit was established. Using the conventional dynamic analysis methods, the equilibrium point set and stability of the chaotic system were analyzed, and the distribution of stable and unstable regions corresponding to the memristor initial states was determined. Then, we analyze the dynamical behaviors with the initial states of the memristors and the circuit parameter of the circuit system, respectively. By using spectral entropy (SE) and C0 complexity algorithms, the dynamic characteristics of the system were analyzed. In particular, the 2D and 3D complexity characteristics with multiple varying parameters were analyzed. Some peculiar physical phenomenon such as coexisting attractors was observed. Theoretical analysis and simulation results show that the chaotic circuit has rich dynamical behaviors. The complicated physical phenomenon in the new chaotic circuit enriches the related content of chaotic circuit with memristors.

2019 ◽  
Vol 29 (07) ◽  
pp. 1950097 ◽  
Author(s):  
Yuman Zhang ◽  
Mei Guo ◽  
Gang Dou ◽  
Yuxia Li ◽  
Guanrong Chen

The [Formula: see text] (SBT) nanometer film can be used as a physical memristive component. Three oscillatory circuits built on the physical SBT memristor are proposed in this paper, one is self-excited oscillatory circuit and two are forced oscillatory circuits. These three oscillatory circuits have simple structures with complex dynamics. The self-excited oscillatory circuit can generate steady periodic oscillations; the first forced oscillatory circuit can generate relatively complex quasi-periodic oscillations, while the second can generate more complex dynamics such as chaotic oscillations. The impacts of the circuit parameter and initial state values of the SBT memristor on the dynamical behaviors of the three oscillatory circuits are investigated via numerical simulations. It is found that the SBT memristor can be used to design various memristor-based circuits. Specifically, in a flux-controlled memristor-based circuit, if an inductor is in parallel with the memristor, the order of the circuit is one less than the number of energy storage elements in the circuit. The equilibrium point of the circuit is different from the typical line equilibrium for autonomous circuits. The initial state value of the memristor has no impact on the steady state of the circuit. The same phenomena are observed for a charge-controlled memristor-based circuit, when a capacitor is in series with the memristor.


2019 ◽  
Vol 29 (12) ◽  
pp. 1950171 ◽  
Author(s):  
Gang Dou ◽  
Huaying Duan ◽  
Wenyan Yang ◽  
Hai Yang ◽  
Mei Guo ◽  
...  

In the paper, a fourth-order SBT-memristor-based chaotic system described by the flux-controlled model is investigated. The stability of the chaotic system is analyzed, and the effects of initial conditions and circuit parameters on the SBT-memristor-based chaotic circuit are discussed by mathematical methods of Lyapunov exponents spectra, bifurcation diagrams, phase orbits and Poincaré maps. Through simulations, it is observed that the dynamical characteristics vary with initial states and circuit parameters. Complex dynamical behaviors such as stable points, period cycles and chaos can be found in the SBT-memristor-based system. It is also found that the system exhibits multistability, which is closely dependent on the initial state of the SBT memristor. This study provides insightful guidance for the design and analysis of memristor-based circuits towards potential real applications.


2017 ◽  
Vol 27 (13) ◽  
pp. 1730047 ◽  
Author(s):  
Mei Guo ◽  
Youbao Xue ◽  
Zhenhao Gao ◽  
Yuman Zhang ◽  
Gang Dou ◽  
...  

In this paper, a physical SBT memristor-based chaotic circuit is presented. The circuit dynamic behavior of dependence on the initial state of the SBT memristor and a key circuit parameter are investigated by theoretical analyses and numerical simulations. The results indicate that different initial states of the SBT memristor and the key circuit parameter can significantly impact the dynamic behavior of the chaotic circuit, such as stable sink, periodic cycle, chaos, and even some complex transient dynamics. It can guide future research on the realization of chaotic circuit based on physical SBT memristor.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Yuxia Li ◽  
Xia Huang ◽  
Mei Guo

We present a new memristor based chaotic circuit, which is generated by replacing the nonlinear resistor in Chua’s circuit with a flux-controlled memristor and a negative conductance. The dynamical behaviors are verified not only by computer simulations but also by Lyapunov exponents, bifurcation analysis, Poincaré mapping, power spectrum analysis, and laboratory experiments.


2016 ◽  
Vol 26 (09) ◽  
pp. 1650145 ◽  
Author(s):  
Renping Wu ◽  
Chunhua Wang

In this paper, a new memristor is proposed, and then an emulator built from off-the-shelf solid state components imitating the behavior of the proposed memristor is presented. Multisim simulation and breadboard experiment are done on the emulator, exhibiting a pinched hysteresis loop in the voltage–current plane when the emulator is driven by a periodic excitation voltage. In addition, a new simple chaotic circuit is designed by using the proposed memristor and other circuit elements. It is exciting that this circuit with only a linear negative resistor, a capacitor, an inductor and a memristor can generate a chaotic attractor. The dynamical behaviors of the proposed chaotic system are analyzed by Lyapunov exponents, phase portraits and bifurcation diagrams. Finally, an electronic circuit is designed to implement the chaotic system. For the sake of simple circuit topology, the proposed chaotic circuit can be easily manufactured at low cost.


2002 ◽  
Vol 12 (01) ◽  
pp. 43-69 ◽  
Author(s):  
FEDERICO BIZZARRI ◽  
MARCO STORACE

This paper deals with the bifurcation analysis of a chaotic oscillator based on hysteresis. The analysis is carried out using two different models of the nonlinear resistive elements of the oscillator. The first model (more convenient from an analysis point of view) is piecewise linear (PWL), whereas the second (more realistic from a synthesis point of view) is smooth. For both models, the main results presented in this paper are two-dimensional bifurcation diagrams obtained for several values of a third circuit parameter.


2013 ◽  
Vol 62 (1) ◽  
pp. 010501
Author(s):  
Sun Ke-Hui ◽  
He Shao-Bo ◽  
He Yi ◽  
Yin Lin-Zi

2020 ◽  
Vol 49 (2) ◽  
pp. 317-332
Author(s):  
Aixue Qi ◽  
Lei Ding ◽  
Wenbo Liu

We propose a meminductor-based chaotic system. Theoretical analysis and numerical simulations reveal complex dynamical behaviors of the proposed meminductor-based chaotic system with five unstable equilibrium points and three different states of chaotic attractors in its phase trajectory with only a single change in circuit parameter. Lyapunov exponents, bifurcation diagrams, and phase portraits are used to investigate its complex chaotic and multi-stability behaviors, including its coexisting chaotic, periodic and point attractors. The proposed meminductor-based chaotic system was implemented using analog integrators, inverters, summers, and multipliers. PSPICE simulation results verified different chaotic characteristics of the proposed circuit with a single change in a resistor value.


Sign in / Sign up

Export Citation Format

Share Document