scholarly journals Fracture Propagation Behavior of Jointed Rocks in Hydraulic Fracturing

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaoxi Men ◽  
Jiren Li ◽  
Zhihui Han

Jointed rocks are typical examples of heterogeneous materials with joints. The existence of joints influences the physical properties of rock mass and propagation of fractures, which can affect production operations in engineering. A series of simulations is performed to understand the failure patterns and fracture propagation behavior of jointed rocks in hydraulic fracturing. Three points, that is, dip-angle joint, joint strength, and complex joints, are considered in the simulations. Results demonstrate three basic kinds of hydraulic fractures on jointed rock, namely, along the joint, across the joint, and partly along the joint and partly across the joint. The maximum principal stress is the control factor of fracture propagation in global scale, and the joint plane is the control factor of fracture propagation in local scale. In the propagation path, when the dip angle is small or the joint is weak, the fracture propagates along the joint; otherwise, the fracture propagates across the joint. In the multijoint interconnection models, hydraulic fractures propagate along joints in the tensile stress regions near the propagating fracture tip without dip angle limitation. Subsequently, the fractures connect with one another to form a complex fracture network based on the joint morphology.

Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Yongxiang Zheng ◽  
Jianjun Liu ◽  
Yun Lei

The formation of the fracture network in shale hydraulic fracturing is the key to the successful development of shale gas. In order to analyze the mechanism of hydraulic fracturing fracture propagation in cemented fractured formations, a numerical simulation about fracture behavior in cemented joints was conducted based firstly on the block discrete element. And the critical pressure of three fracture propagation modes under the intersection of hydraulic fracturing fracture and closed natural fracture is derived, and the parameter analysis is carried out by univariate analysis and the response surface method (RSM). The results show that at a low intersecting angle, hydraulic fractures will turn and move forward at the same time, forming intersecting fractures. At medium angles, the cracks only turn. At high angles, the crack will expand directly forward without turning. In conclusion, low-angle intersecting fractures are more likely to form complex fracture networks, followed by medium-angle intersecting fractures, and high-angle intersecting fractures have more difficulty in forming fracture networks. The research results have important theoretical guiding significance for the hydraulic fracturing design.


2022 ◽  
Vol 2152 (1) ◽  
pp. 012048
Author(s):  
Zhongshan Shen ◽  
Hui Xue ◽  
Zhiqiang Bai

Abstract Perforation azimuth has an important influence on the nucleation, propagation path and morphology of hydraulic fractures. In this paper, the true triaxial hydraulic fracturing simulation experimental system is used to analyze the hydraulic fracture morphology and propagation path under different perforation azimuth angles. With the increase of the azimuth angle of perforation, the stable fracture propagation pressure of the fracturing sample also increases. When the azimuth angle of perforation is 0°, the propagation pressure is about 18 MPa, and when the azimuth angle of perforation is 90°, the propagation pressure is about 26.5 MPa, increasing by nearly 47.22%.


2021 ◽  
pp. 014459872198899
Author(s):  
Weiyong Lu ◽  
Changchun He

Directional rupture is one of the most important and most common problems related to rock breaking. The goal of directional rock breaking can be effectively achieved via multi-hole linear co-directional hydraulic fracturing. In this paper, the XSite software was utilized to verify the experimental results of multi-hole linear co-directional hydraulic fracturing., and its basic law is studied. The results indicate that the process of multi-hole linear co-directional hydraulic fracturing can be divided into four stages: water injection boost, hydraulic fracture initiation, and the unstable and stable propagation of hydraulic fracture. The stable expansion stage lasts longer and produces more microcracks than the unstable expansion stage. Due to the existence of the borehole-sealing device, the three-dimensional hydraulic fracture first initiates and expands along the axial direction in the bare borehole section, then extends along the axial direction in the non-bare hole section and finally expands along the axial direction in the rock mass without the borehole. The network formed by hydraulic fracture in rock is not a pure plane, but rather a curved spatial surface. The curved spatial surface passes through both the centre of the borehole and the axial direction relative to the borehole. Due to the boundary effect, the curved spatial surface goes toward the plane in which the maximum principal stress occurs. The local ground stress field is changed due to the initiation and propagation of hydraulic fractures. The propagation direction of the fractures between the fracturing boreholes will be deflected. A fracture propagation pressure that is greater than the minimum principle stress and a tension field that is induced in the leading edge of the fracture end, will aid to fracture intersection; as a result, the possibility of connecting the boreholes will increase.


2020 ◽  
Vol 10 (3) ◽  
pp. 1153 ◽  
Author(s):  
Shirong Cao ◽  
Xiyuan Li ◽  
Zhe Zhou ◽  
Yingwei Wang ◽  
Hong Ding

Coalbed methane is not only a clean energy source, but also a major problem affecting the efficient production of coal mines. Hydraulic fracturing is an effective technology for enhancing the coal seam permeability to achieve the efficient extraction of methane. This study investigated the effect of a coal seam reservoir’s geological factors on the initiation pressure and fracture propagation. Through theoretical analysis, a multi-layered coal seam initiation pressure calculation model was established based on the broken failure criterion of maximum tensile stress theory. Laboratory experiments were carried out to investigate the effects of the coal seam stress and coal seam dip angle on the crack initiation pressure and fracture propagation. The results reveal that the multi-layered coal seam hydraulic fracturing initiation pressure did not change with the coal seam inclination when the burial depth was the same. When the dip angle was the same, the initiation pressure linearly increased with the reservoir depth. A three-dimensional model was established to simulate the actual hydraulic fracturing crack propagation in multi-layered coal seams. The results reveal that the hydraulic crack propagated along the direction of the maximum principal stress and opened in the direction of the minimum principal stress. As the burial depth of the reservoir increased, the width of the hydraulic crack also increased. This study can provide the theoretical foundation for the effective implementation of hydraulic fracturing in multi-layered coal seams.


2015 ◽  
Author(s):  
Hisanao Ouchi ◽  
Amit Katiyar ◽  
John T. Foster ◽  
Mukul M. Sharma

Abstract A novel fully coupled hydraulic fracturing model based on a nonlocal continuum theory of peridynamics is presented and applied to the fracture propagation problem. It is shown that this modeling approach provides an alternative to finite element and finite volume methods for solving poroelastic and fracture propagation problems and offers some clear advantages. In this paper we specifically investigate the interaction between a hydraulic fracture and natural fractures. Current hydraulic fracturing models remain limited in their ability to simulate the formation of non-planar, complex fracture networks. The peridynamics model presented here overcomes most of the limitations of existing models and provides a novel approach to simulate and understand the interaction between hydraulic fractures and natural fractures. The model predictions in two-dimensions have been validated by reproducing published experimental results where the interaction between a hydraulic fracture and a natural fracture is controlled by the principal stress contrast and the approach angle. A detailed parametric study involving poroelasticity and mechanical properties of the rock is performed to understand why a hydraulic fracture gets arrested or crosses a natural fracture. This analysis reveals that the poroelasticity, resulting from high fracture fluid leak-off, has a dominant influence on the interaction between a hydraulic fracture and a natural fracture. In addition, the fracture toughness of the rock, the toughness of the natural fracture, and the shear strength of the natural fracture also affect the interaction between a hydraulic fracture and a natural fracture. Finally, we investigate the interaction of multiple completing fractures with natural fractures in two-dimensions and demonstrate the applicability of the approach to simulate complex fracture networks on a field scale.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Xin Zhang ◽  
Yuqi Zhang ◽  
Tao Zhang

The stress disturbance effect will significantly affect the propagation path of hydraulic fractures in the composite rock reservoir. To reveal the influence mechanism of stress disturbance effect on the hydraulic fracture propagation, several groups of laboratory tests and simulation tests were carried out. The test results showed that the hydraulic fracture tip formed a disturbing stress field because of the pore water pressure. Before the hydraulic fracture was extended to the bedding plane, the bedding plane had been damaged under stress disturbance, and the disturbed fracture zone was formed. The propagation mode of hydraulic fracture at the bedding plane was highly sensitive to the formation of the disturbed fracture zone. The sensitivity is mainly reflected from two aspects. (1) Under the action of the hydraulic fracture tip disturbance stress, many microfractures are generated and penetrated into the disturbance fracture zone on the bedding plane. This behavior is accompanied by energy dissipation causing the bedding plane material to be significantly softened, and the energy required for hydraulic fracture propagation is reduced dramatically. (2) The formation of the disturbed fracture zone improves the degree of fragmentation of the bedding plane, and the permeability of the local area increases significantly, forming the dominant circulation path. The higher the development of the disturbed fracture zone, the greater the hydraulic fracture propagation tendency along the bedding plane. According to the formation characteristics of the bedding plane disturbed fracture zone, the author proposed a nonlinear fracture model of the bedding plane disturbed fracture zone and established the hydraulic fracture propagation path criterion. This paper further analyzed the influencing factors of the disturbed fracture zone’s formation conditions and found that the bedding plane’s cementation strength was the main factor affecting the development degree of the disturbed fracture zone.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-24
Author(s):  
Xin Zhang ◽  
Yuqi Zhang ◽  
Bingxiang Huang

Hydraulic fracturing applications have shown a stress disturbance effect during hydraulic fracture propagation, which is often ignored. Using laboratory and discrete element numerical simulation tests, hydraulic fracture propagation under this stress disturbance is systematically studied. The results show that during hydraulic fracturing, the bedding plane is damaged by the stress disturbance, forming a bedding fracture zone (BFZ). The nonlinear fracture characteristics of the formation process of the disturbed fracture zone are revealed, and two indexes (the number of fractures in the disturbed fracture zone and the size of the disturbed fracture zone) are proposed to evaluate the fracturing effect of the stress disturbance. Based on these indexes, multifactor sensitivity tests are conducted under different geological conditions and operational factors. When the principal stress ( σ 1 ) difference is large, the number of hydraulic fractures gradually decreases from many to one, and the direction of the hydraulic fractures gradually approaches the vertical direction of σ 3 , but the change in the in situ stress condition has no obvious effect on the stress disturbance effect. The weaker the bonding strength of the bedding plane, the more significant the stress disturbance effect is, and the easier it is for the fractures to expand along the bedding plane. With increasing injection rate, the stress disturbance effect first increases and then decreases, and the hydraulic fracture propagates from along the bedding plane to cross the bedding plane. With increasing relative distance between the injection hole and bedding plane, the stress disturbance effect presents a linearly increasing trend, and the hydraulic fractures along the bedding planes extend. Based on the experimental results, the relationship between the fracturing effect of the stress disturbance and the extension mode of the hydraulic fracture is determined, and an optimization method for hydraulic fracturing in composite rock reservoirs is given. The research results can provide a theoretical basis for controlling the formation of complex fracture networks in composite rock reservoirs.


SPE Journal ◽  
2021 ◽  
pp. 1-12
Author(s):  
Yunhui Tan ◽  
Shugang Wang ◽  
Margaretha C. M. Rijken ◽  
Kelly Hughes ◽  
Ivan Lim Chen Ning ◽  
...  

Summary Recently more distributed acoustic sensing (DAS) data have been collected during hydraulic fracturing in shale. Low-frequency DAS signals show patterns that are intuitively consistent with the understanding of the strain field around hydraulic fractures. This study uses a fracture simulator combined with a finite element solver to further understand the various patterns of the strain field caused by hydraulic fracturing. The results can serve as a “type-curve” template for the further interpretation of cross-well strain field plots. Incorporating detailed pump schedule and fracturing fluid/proppant properties, we use a hydraulic fracture simulator to generate fracture geometries, which are then passed to a finite element solver as boundary conditions for elastic-static calculation of the strain field. Because the finite element calculated strain is a tensor, it needs to be projected along the monitoring well trajectory to be comparable with the DAS strain, which is uniaxial. Moreover, the calculated strain field is transformed into a time domain using constant fracture propagation velocity. Strain rate is further derived from the simulated strain field using differentiation along the fracture propagation direction. Scenarios including a single planar hydraulic fracture, a single fracture with a discrete fracture network (DFN), and multiple planar hydraulic fractures in both vertical and horizontal directions were studied. The scenarios can be differentiated in the strain patterns on the basis of the finite element simulation results. In general, there is a tensile heart-shaped zone in front of the propagating fracture tip shown along the horizontal strain direction on both strain and strain rate plots. On the sides, there are compressional zones parallel to the fracture. The strain field projects beyond the depth where the hydraulic fracture is present. Patterns from strain rate can be used to distinguish whether the fracture is intersecting the fiber. Along the vertical direction, the transition zone depicts the upper boundary of the fracture. A complex fracture network with DFN shows a much more complex pattern compared with a single planar fracture. Multiple planar fractures show polarity reversals in horizontal fiber because of interactions between fractures. Data from the Hydraulic Fracturing Test Site 2 (HFTS2) experiment were used to validate the simulated results. The application of the study is to provide a template to better interpret hydraulic fracture characteristics using low-frequency DAS strain-monitoring data. To our understanding, there are no comprehensive templates for engineers to understand the strain signals from cross-well fiber monitoring. The results of this study will guide engineers toward better optimization of well spacing and fracturing design to minimize well interference and improve efficiency.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1841
Author(s):  
Xia Xiao ◽  
Cong Xiao

Stress interference of multiplied fractures has significant influences on the propagation behavior of hydraulic fractures in roads, bridges, clay formations, and other forms of engineering. This paper establishes a crossing criterion and initiation angle model with comprehensive consideration of remote stress, stress intensity near the tip of fracture, and stress interference of multiplied fractures. Compared with the existing crossing criterion and initiation angle model, the ability to cross natural fractures decreases. Furthermore, the secondary initiation angle decreases with consideration of multiplied fracture propagation. The length of hydraulic fractures and natural fractures has little influence on the secondary initiation angle. With the increase in fracture space, the stress interference between fractures decreases, and as a result, the initiation angle begins to increase and then decrease. Differing from the propagation behavior of single fracture, the initiation angle basically does not vary with the increasing of net pressure under the high intersection angle between hydraulic fractures and natural fractures. Under a low intersection angle condition, the bigger the net pressure is, the smaller the initiation angle is. These results have great significance when analyzing the propagation behavior of multiplied fractures in real-world applications.


Sign in / Sign up

Export Citation Format

Share Document