scholarly journals Chronological Classification of Ancient Mortars Employing Spectroscopy and Spectrometry Techniques: Sagunto (Valencia, Spain) Case

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
M. Ramacciotti ◽  
S. Rubio ◽  
G. Gallello ◽  
M. Lezzerini ◽  
S. Columbu ◽  
...  

Forty-two mortar samples, from two archaeological excavations located in Sagunto (Valencian Community, Spain), were analysed by both portable energy dispersive X-ray fluorescence spectroscopy (pED-XRF) and inductively coupled plasma mass spectrometry (ICP-MS) to determine major and minor elements and traces including rare earth elements (REEs). Collected data were crossed with those previously obtained from Sagunto Castle mortars, and principal component analysis (PCA) was applied to discriminate the construction phases of the unearthed buildings. REE permitted to ascribe most of the masonries to the Roman Imperial period. Moreover, a statistical model was built by employing partial least squares discriminant analysis (PLS-DA) in order to classify the mortars from Roman Imperial period and from Islamic period due to the problematic overlapping between these two phases. Results confirmed the effectiveness of the developed indirect chronology method, based on REE data, to discriminate among historic mortars from different construction periods on a wide scale including different Sagunto archaeological sites.

2021 ◽  
Vol 3 ◽  
Author(s):  
Robert J. Rauschendorfer ◽  
Kyle M. Whitham ◽  
Star Summer ◽  
Samantha A. Patrick ◽  
Aliandra E. Pierce ◽  
...  

Plastics have long been an environmental contaminant of concern as both large-scale plastic debris and as micro- and nano-plastics with demonstrated wide-scale ubiquity. Research in the past decade has focused on the potential toxicological risks posed by microplastics, as well as their unique fate and transport brought on by their colloidal nature. These efforts have been slowed by the lack of analytical techniques with sufficient sensitivity and selectivity to adequately detect and characterize these contaminants in environmental and biological matrices. To improve analytical analyses, microplastic tracers are developed with recognizable isotopic, metallic, or fluorescent signatures capable of being identified amidst a complex background. Here we describe the synthesis, characterization, and application of a novel synthetic copolymer nanoplastic based on polystyrene (PS) and poly(2-vinylpyridine) (P2VP) intercalated with gold, platinum or palladium nanoparticles that can be capped with different polymeric shells meant to mimic the intended microplastic. In this work, particles with PS and polymethylmethacrylate (PMMA) shells are used to examine the behavior of microplastic particles in estuarine sediment and coastal waters. The micro- and nanoplastic tracers, with sizes between 300 and 500 nm in diameter, were characterized using multiple physical, chemical, and colloidal analysis techniques. The metallic signatures of the tracers allow for quantification by both bulk and single-particle inductively-coupled plasma mass spectrometry (ICP-MS and spICP-MS, respectively). As a demonstration of environmental applicability, the tracers were equilibrated with sediment collected from Bellingham Bay, WA, United States to determine the degree to which microplastics bind and sink in an estuary based of grain size and organic carbon parameters. In these experiments, between 80 and 95% of particles were found to associate with the sediment, demonstrative of estuaries being a major anticipated sink for these contaminants. These materials show considerable promise in their versatility, potential for multiplexing, and utility in studying micro- and nano-plastic transport in real-world environments.


2020 ◽  
Vol 16 (8) ◽  
pp. 1259-1264
Author(s):  
Francesco Caridi ◽  
Maurizio D’Agostino ◽  
Alberto Belvedere ◽  
Antonio F. Mottese

Background and Objectives: In this article, a comprehensive study was carried out for food authenticity evaluation through chemometric analyses, correlating botanical and geographical origins with food chemical composition. Methods: A total of eighteen Calabrian red, rose and white wines were analyzed through Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Results: The mineral concentrations, determined by ICP-MS in the investigated wine samples, followed the subsequent order: K > P > Mg > Na > Ca > Fe > Cu > Zn > Mn > V. : The 2D Scatterplot and loading plot (Principal Component Analysis) showed that all red, rose and white wine samples from “Cirò” DOP area were grouped in the fourth, second and third quadrant, respectively, clearly separated from each other. Samples from “Cirò” red showed positive PC1 and were characterized by higher K, Fe, Mn, Na, V and Zn concentrations. Moreover, the points corresponding to two red wines from the “Terre di Cosenza” DOP area fall into the first quadrant; those corresponding to two rose wines from the “Donnici” and “Sant’Anna di Isola di Capo Rizzuto” DOP areas fall into the third and fourth quadrants, respectively; the point corresponding to a white wine from the “Donnici” DOP area falls into the second quadrant. Conclusions: Experimental results demonstrated that it is possible to strictly relate, through the PCA, wines to their geographical and botanical provenance, thus becoming a useful tool for evaluating the product authenticity and guaranteeing it to the consumers.


2021 ◽  
Vol 68 (4) ◽  
pp. 913-920
Author(s):  
Lovro Sinkovič ◽  
Marijan Nečemer ◽  
Barbara Pipan ◽  
Vladimir Meglič

The current study involves two analytical research techniques, inductively coupled plasma-mass spectrometry (ICP-MS) and energy dispersive X-ray fluorescence (EDXRF) spectroscopy, used to determine the elemental composition of different legumes usually produced and consumed in Slovenia. Results indicate that data obtained using these methods are in agreement with certified reference materials. In total, nineteen elements were determined from twenty legume samples. An intercomparison between four macro- (P, S, K, Ca) and three microelements (Fe, Zn, Mo) measured using ICP-MS and EDXRF methods showed a strong correlation. The EDXRF was found to be a cheaper, simpler and more environmentally friendly method for determination of elements P, S, Cl, K, Ca, Fe, Zn, Mo, Sr, Rb, Ti and Br in legumes, while for the identification and determination of Na, Mg, V, Cr, Mn, Co and Cu content ICP‐MS was the method of choice due to its excellent sensitivity and accuracy. Using principal component analysis (PCA), the samples of the studied legumes were classified into four groups according to their elemental composition.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 4871
Author(s):  
Sasan Rabieh ◽  
Odmaa Bayaraa ◽  
Emarosa Romeo ◽  
Patila Amosa ◽  
Khemet Calnek ◽  
...  

The elemental composition of freshwater and saltwater samples around the South Pacific island of Upolu, Samoa has been investigated together with other indicators of water quality. Up to 69 elements from Li (3) to U (92) are measured in each sample, analyzed by Mattauch–Herzog-inductively coupled plasma-mass spectrometry (MH-ICP-MS). One hundred and seventy-six samples were collected from surface freshwater sources (24 rivers, two volcanic lakes, one dam) and from seawater sources from the surface to 30 m depth (45 inner reef, reef, and outer reef locations) around Upolu Island, including river mouths and estuaries. Principal component and hierarchical clustering correlation analyses were performed on quantile normalized log transformed elemental composition data to identify groups of samples with similar characteristics and to improve the visualization of the full spectrum of elements. Human activities, such as the use of herbicides and pesticides, may relate to observed elevated concentrations of some elements contained in chemicals known to have deleterious obesogenic effects on humans that may also cause coral reef decline. Furthermore, the salinity of some saltwater samples tested were very high, possibly due to climate variability, which may additionally harm the health and biodiversity of coral reefs.


Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1098
Author(s):  
Long Cheng ◽  
Chengjiang Zhang ◽  
Hao Song ◽  
Qian Cheng

The Datian uranium deposit is a migmatite-hosted, high temperature, hydrothermal deposit in the Kangdian region. Detailed information on the chemical composition and formation age of the uraninite remains lacking, which impedes our understanding of uraninite genesis. Two phases of uraninite have been identified according to their relationships with other minerals and their field relationships. The phase 1 (Ur1) uraninite is characterized by local development of microfractures and pores in the crystal of uraninite, a scattered distribution, and irregular crystal shapes, and it is associated with ilmenite, biotite, and rare earth element (REE) minerals (monazite and xenotime). The phase 2 uraninite (Ur2) has anhedral crystal shapes with well-developed microfractures and pores and is associated with pyrite, albite, pyrrhotite, molybdenite, zircon, and chlorite. X-ray element mapping revealed that the distributions of U, Th, and Pb in the Ur1 uraninite are homogeneous, whereas those in the Ur2 uraninite are heterogeneous. The results of the electron microprobe analysis (EMPA) show that the UO2 and PbO contents of the Ur1 and Ur2 uraninite do not vary significantly. The high ThO2 contents of the Ur1 (1.08–1.68 wt %) and Ur2 uraninite (3.41–4.83 wt %) indicate that they formed at different temperatures. The laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis results show that the ∑REE of the Ur1 uraninite (3747.5–7032.3 ppm) is lower than that of the Ur2 uraninite (8369.2–11,484.3 ppm), and the REE patterns of the Ur1 and Ur2 uraninite are sickle-shaped with large negative Eu anomalies. The LA-ICP-MS U–Pb dating results revealed that the ages of the Ur1 (841.4 ± 4.0 Ma) and Ur2 (834.5 ± 4.1 Ma–837.2 ± 4.5 Ma) uraninite are in consistent with that of the migmatite. Thus, the Datian uranium deposit underwent at least two hydrothermal events, and the uraninite was formed due to the migmatization.


2018 ◽  
Vol 7 (3.30) ◽  
pp. 15
Author(s):  
Siti Nadzifah Ghazali ◽  
Fazrul Razman ◽  
Mohd Zahari Abdullah

Rainwater samples were collected in Jengka, Pahang Malaysia. Temperature, pH, TDS, EC, Al, Cu, Mn, and Zn were measured. The concentrations of heavy metals (Al, Cu, Mn and Zn) in thirty-eight samples were analysed using inductively coupled plasma-mass spectrometry (ICP-MS). Statistical analysis results indicate that pH, TDS, and EC showed significant differences between wet and dry seasons. However, no significant difference was observed seasonally for heavy metals (HMs). All parameters, except pH, were below the Malaysian Drinking Water Guidelines (MDWG) value and the health risk assessment for HMs indicates the safe levels. Principal component analysis (PCA) suggests that HMs in rainwater in Jengka, Pahang were originated from natural and anthropogenic sources.  


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 349
Author(s):  
Natasa P. Kalogiouri ◽  
Natalia Manousi ◽  
Dimitris Klaoudatos ◽  
Thomas Spanos ◽  
Vilson Topi ◽  
...  

Pistachios are a nutritionally beneficial food source widely consumed all over the world. Pistachios exhibit high content of antioxidants, vitamins and other beneficial micronutrients, including nutrient elements and rare earth elements (REEs). Considering that the concentration of REEs depends on the climate and soil characteristics that vary among different geographical regions, REEs could constitute markers responsible for the geographical discrimination of this nut type. In this study, Greek pistachios with a protected designation of origin (PDO) label from Aegina Island and Fthiotida and Turkish pistachios from Adana were analyzed with inductively coupled plasma mass spectrometry (ICP-MS) to assess their REE profile. La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb were determined and quantified. The quantification results were further analyzed using the main effect plot, permutational analysis of variance (PERMANOVA), nonmetric multidimensional scaling (nMDS), principal component analysis (PCA) and hierarchical clustering (HCA) to investigate the similarities between the pistachios. A decision tree (DT) was developed for the classification of pistachios according to their geographical origin proving to be a promising and reliable tool for verifying the authenticity of food products on the basis of their REE profile.


2019 ◽  
Author(s):  
Ingo Strenge ◽  
Carsten Engelhard

<p>The article demonstrates the importance of using a suitable approach to compensate for dead time relate count losses (a certain measurement artefact) whenever short, but potentially strong transient signals are to be analysed using inductively coupled plasma mass spectrometry (ICP-MS). Findings strongly support the theory that inadequate time resolution, and therefore insufficient compensation for these count losses, is one of the main reasons for size underestimation observed when analysing inorganic nanoparticles using ICP-MS, a topic still controversially discussed.</p>


Sign in / Sign up

Export Citation Format

Share Document