scholarly journals Gut Microbiota Composition and Structure of the Ob/Ob and Db/Db Mice

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Mingsheng Yang ◽  
Yixin Liu ◽  
Hengchang Xie ◽  
Zhengzheng Wen ◽  
Yunxia Zhang ◽  
...  

Introduction. Gut microbiota is involved in the progression of metabolic diseases such as obesity and type 2 diabetes. The ob/ob and db/db mice are extensively used as models in studies on the pathogenesis of these diseases. The goal of this study is to characterize the composition and structure of gut microbiota in these model mice at different ages. Materials and methods. High-throughput sequencing was used to obtain the sequences of the highly variable 16S rRNA V3-V4 region from fecal samples. The taxa with high abundance in both model mice were identified by bioinformatics analysis. Moreover, the taxa with divergent abundance in one model mice at different ages or in both model mice at the same age were also recognized. Discussion and conclusion. The high abundance of Bacteroidetes and Firmicutes in microbiota composition and their imbalanced ratio in both model mice reflect the state of metabolic disorders of these mice. Differences in microbiota composition between the two model mice of the same age or in one model mice with different ages were assumed to be closely linked to the fluctuation of their blood glucose levels with age. The data on gut microbiota in ob/ob and db/db mice investigated herein has broad implications for the pathogenesis study and drug discovery on obesity and related complications.

2021 ◽  
Vol 368 (5) ◽  
Author(s):  
Sai Wang ◽  
Xin-Yu Li ◽  
Liang Shen

Abstract In recent years, the relationship between type 2 diabetes (T2D) and gut microbiota has attracted much interest. Dendrobium officinale is a valuable traditional Chinese medicine (TCM) with anti-T2D potential, while its action mechanism remains to be further studied. This study was designed to investigate the modulation effects of D. officinale on gut microbiota of T2D model mice to provide clues to its pharmacology by high-throughput sequencing techniques. It was found that D. officinale supplement could significantly reduce the fasting blood glucose levels of T2D mice. Dendrobium officinale supplement could modulate the composition of gut microbiota and increase the relative abundances of key bacterial taxa associated with T2D development, including Akkermansia and Parabacteroides. Compared with placebo group mice, several Kyoto Encyclopedia of Gene and Genomes pathways associated with T2D altered in the D. officinale treated group. These findings indicated the modulation of D. officinale on gut microbiota of T2D mice, which provide potential pharmacological implications.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Yiqiang Xie ◽  
Man Xiao ◽  
Yali Ni ◽  
Shangfei Jiang ◽  
Guizhu Feng ◽  
...  

Recently, the role of gut microbiota in the development of obesity and type 2 diabetes mellitus (T2DM) has been highlighted. We performed an 8-week administration protocol on T2DM (C57BL/6J db-/db-) mice and fecal samples were collected. Comparisons of fecal bacterial communities were performed between db-/db- mice and normal mice (DB/DB) and between the db-/db mice treated and untreated with AOE using next-generation sequencing technology. Our results showed that the db-/db-AOE group had improved glycemic control and renal function compared with the db-/db-H2O group. Compared with the db-/db-H2O group, AOE administration resulted in significantly increased ratio of Bacteroidetes-to-Firmicutes in db-/db- mice. In addition, the abundance ofAkkermansiawas significantly increased, whileHelicobacterwas significantly suppressed in the db-/db-AOE group compared with the db-/db-H2O group. Our data suggest that AOE treatment decreased blood glucose levels and significantly reduced damage of renal pathology in the T2DM mice by modulating gut microbiota composition.


2018 ◽  
Vol 6 (1) ◽  
pp. 85
Author(s):  
Gema Akbar Wakhidana ◽  
Ancah Caesarina Novi Marchianti ◽  
Ali Santosa

Diabetes mellitus is metabolic diseases characterized by hyperglycemia caused by disturbances in insulin secretion or insulin activity. Herbal Forte Rice is rice synthetic material composed of main purple sweet potato and corn flour. It contains antioksidan, fiber, resistant starch and having moderate glycemic index. This study aimed to determine the effectivity of Herbal Forte Rice on decreasing blood glucose levels of patients type 2 DM. It used a cross-over design, the role of research subjects was both as control and treatment groups. Total sample of this research consisted of 60 samples. The treatment group was given Herbal Forte Rice for 7 days in 2 consecutive meals, while the control group did not receive any intervention. The results showed the average level of Fasting Blood Glucose (FBG) beginning and end of the treatment group 179.76 mg/dL and 138.7 mg/dL; FBG beginning and end of the control 180.87 mg/dL and 187.63 mg/dL; 2 hours post prandial Blood Glucose (2hppBG) levels of beginning and end of the treatment group 284.37 mg/dL and 183.8 mg/dL; 2hppBG levels beginning and end of the control 280.57 mg/dL and 284.13 mg/dL. This study concludes that Herbal Forte Rice effective on decreasing blood glucose levels of patients type 2 DM.   Keywords: diabetes mellitus, Rice Herbal Forte, GDP and GD2PP  


2020 ◽  
Vol 318 (1) ◽  
pp. E52-E61
Author(s):  
Na Rae Shin ◽  
Namyi Gu ◽  
Han Seok Choi ◽  
Hojun Kim

Metformin is a widely prescribed antidiabetic agent, whereas Scutellaria baicalensis (SB) is a commonly used medicinal herb for treatment of type 2 diabetes (T2D). Gut microbiota is involved in pathophysiology of metabolic diseases including T2D, and intestinal microbiota may be one of the important therapeutic targets for the ailment. This study was conducted to investigate the effects of SB combined with metformin on treatment of T2D while evaluating changes in the gut microbiota composition. Patients with T2D were randomized into control and treatment groups. Subjects who had already been prescribed metformin were allotted to additional SB (3.52 g/day) group or placebo group. The initial treatment session was 8 wk, and after washout period for 4 wk they were crossed over to the opposite treatment for another 8 wk. The influence of SB and placebo on the intestinal microbiota was analyzed by MiSeq system based on 16S rRNA gene. Glucose tolerance was lower in the SB group than the placebo group. Similarly, the relative RNA expression of TNF-α was significantly reduced after SB treatment. SB treatment influenced the gut microbiota, especially Lactobacillus and Akkermansia, which showed remarkable increases after SB treatment. Some subjects showed high liver enzyme levels after SB treatment, and their microbiota composition at baseline differed with subjects whose liver enzymes were not affected. We also predicted that selenocompound metabolism was increased and naphthalene degradation was decreased after SB treatment. These results suggest that SB with metformin treatment may improve the glucose tolerance and inflammation and influence the gut microbiota community in T2D.


1970 ◽  
Vol 5 (1) ◽  
pp. 61-74 ◽  
Author(s):  
Alexandre de Souza E Silva ◽  
Maria Paula Gonçalves Mota

O trabalho tem como objetivo analisar os estudos que avaliaram os efeitos dos programas de treinamento aeróbio, força e combinado nos níveis de glicose sanguínea em indivíduos com diabetes do tipo 2. Foi utilizado o método de revisão sistemática, sendo utilizada a base de dados PubMed. As palavras chaves utilizadas para pesquisa foram training and diabetes. Foram identificados 484 artigos originais. Apenas 17 estudos respeitaram os critérios de inclusão. Os resultados evidenciam que os programas de treinamento aeróbio diminuíram os níveis de glicose. O programa de treinamento de força também foi favorável à diminuição dos níveis de glicose sanguínea. Já o programa de treinamento combinado não demonstrou efeitos favoráveis no controle da glicose sanguínea. Conclui-se que o programa de treinamento aeróbio e de força ajudam a controlar os níveis de glicose sanguínea em indivíduos com diabetes do tipo 2. Palavras-chave: diabetes mellitus, treinamento, glicose.ABSTRACTThe study aims to analyze the studies that evaluated the effects of aerobic, strength and combined programs training in blood glucose levels in people with type 2 diabetes. We used a systematic review method and is used to PubMed database. The key words used for searching were training and diabetes. We identified 484 original articles. Only 17 studies complied with the inclusion criteria. The results show that aerobic training programs decreased glucose levels. The strength training program was also favorable to decrease in blood glucose levels. But the combined training program has not shown favorable effects on blood glucose control. We conclude that the aerobic training and strength helps control blood glucose levels in individuals with type 2 diabetes. Keywords: diabetes mellitus, training, glucose.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Musri Musman ◽  
Mauli Zakia ◽  
Ratu Fazlia Inda Rahmayani ◽  
Erlidawati Erlidawati ◽  
Safrida Safrida

Abstract Background Ethnobotany knowledge in a community has shaped local wisdom in utilizing plants to treat diseases, such as the use of Malaka (Phyllanthus emblica) flesh to treat type 2 diabetes. This study presented evidence that the phenolic extract of the Malaka flesh could reduce blood sugar levels in the diabetic induced rats. Methods The phenolic extract of the P. emblica was administrated to the glucose-induced rats of the Wistar strain Rattus norvegicus for 14 days of treatment where the Metformin was used as a positive control. The data generated were analyzed by the two-way ANOVA Software related to the blood glucose level and by SAS Software related to the histopathological studies at a significant 95% confidence. Results The phenolic extract with concentrations of 100 and 200 mg/kg body weight could reduce blood glucose levels in diabetic rats. The post hoc Dunnet test showed that the administration of the extract to the rats with a concentration of 100 mg/kg body weight demonstrated a very significant decrease in blood glucose levels and repaired damaged cells better than administering the extract at a concentration of 200 mg/kg weight body. Conclusion The evidence indicated that the phenolic extract of the Malaka flesh can be utilized as anti type 2 Diabetes mellitus without damaging other organs.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2474
Author(s):  
Lyudmila V. Gromova ◽  
Serguei O. Fetissov ◽  
Andrey A. Gruzdkov

The worldwide prevalence of metabolic diseases such as obesity, metabolic syndrome and type 2 diabetes shows an upward trend in recent decades. A characteristic feature of these diseases is hyperglycemia which can be associated with hyperphagia. Absorption of glucose in the small intestine physiologically contributes to the regulation of blood glucose levels, and hence, appears as a putative target for treatment of hyperglycemia. In fact, recent progress in understanding the molecular and cellular mechanisms of glucose absorption in the gut and its reabsorption in the kidney helped to develop a new strategy of diabetes treatment. Changes in blood glucose levels are also involved in regulation of appetite, suggesting that glucose absorption may be relevant to hyperphagia in metabolic diseases. In this review we discuss the mechanisms of glucose absorption in the small intestine in physiological conditions and their alterations in metabolic diseases as well as their relevance to the regulation of appetite. The key role of SGLT1 transporter in intestinal glucose absorption in both physiological conditions and in diabetes was clearly established. We conclude that although inhibition of small intestinal glucose absorption represents a valuable target for the treatment of hyperglycemia, it is not always suitable for the treatment of hyperphagia. In fact, independent regulation of glucose absorption and appetite requires a more complex approach for the treatment of metabolic diseases.


Sign in / Sign up

Export Citation Format

Share Document