scholarly journals Effects of Continuous Laydown and Compaction on Interlayer Shear Bonding of Asphalt Layers

2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Haitao Zhang ◽  
Mingyang Gong ◽  
Jian Wu ◽  
Quansheng Sun

Traditional discontinuous paving technology of asphalt pavement is to pave and compact with two different gradation asphalt mixtures in the upper and lower layers, respectively, so the interlayer contact state of asphalt mixture is the major issue of pavement structure. Meanwhile, the continuous paving technology is to pave and compact with two different gradation asphalt mixtures in the upper and lower layers simultaneously, which can solve the issue of interlayer contact appropriately. In order to contrast the shear performance of the structural layer based on continuous and discontinuous paving technology, in this project, through simulating site construction, the double-deck Marshall and rut specimens are prepared based on two different gradation asphalt mixtures simultaneously, and the mechanical and interlayer shear performances of asphalt mixtures under continuous and discontinuous paving technology are tested at room temperature, low temperature, and freeze-thaw. The test results show that the mechanical and interlayer shear performance of continuous paving asphalt mixtures is better than that of discontinuous paving asphalt mixture. The findings can provide a certain technical basis for the design of continuous paving asphalt pavement.

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5523
Author(s):  
Jingsheng Pan ◽  
Hua Zhao ◽  
Yong Wang ◽  
Gang Liu

The influence of sand accumulation on the skid resistance of asphalt pavement was studied. Many scholars have researched the anti-skid performance of conventional asphalt pavements. However, there is a lack of research on the anti-skid performance of desert roads under the condition of sand accumulation. In this study, AC-13 and AC-16 asphalt mixtures were used. The British Pendulum Number (BPN) under different sand accumulations was measured with a pendulum friction coefficient meter, and the Ames engineering texture scanner was used to obtain different sand accumulations. The texture index of asphalt mixture was used to study the macro and micro texture of asphalt pavement under different amounts of sand accumulation, and the degree of influence of different particle sizes on BPN was obtained through gray correlation analysis. The test results show that the presence of aeolian sand has a significant impact on the macro and micro texture of the asphalt pavement and will cause the anti-skid performance to decrease. Moreover, there is an apparent positive linear correlation between the road surface texture index and BPN. The research results may provide reference and reference for the design and maintenance of desert highways.


2019 ◽  
Vol 14 (2) ◽  
pp. 178-207 ◽  
Author(s):  
Audrius Vaitkus ◽  
Ovidijus Šernas ◽  
Viktoras Vorobjovas ◽  
Judita Gražulytė

Road traffic noise is a widespread problem, especially in the densely populated cities of Europe. Exposure to high levels of (traffic) noise leads to health problems, such as stress, sleep disturbance and even heart diseases. Noise-reducing asphalt pavements are more frequently developed and selected as a first noise abatement solution. Performance of noise-reducing asphalt pavement depends on the composition and properties of asphalt mixture components, and pavement properties such as layer thickness, voids in pavement, texture. Design of asphalt mixture for the noise-reducing asphalt pavements is even more complicated for severe and cold climate regions where significant temperature fluctuations and many of frost-thaw cycles occur. Thus, the balance between mechanical and acoustical durability depends on the proper selection of asphalt mixture components. Components of these asphalt mixtures have primarily to be tested to determine their physical and mechanical properties. The main aim of this research is to evaluate properties of local aggregates, bituminous binders, and regarding test results, select the most suitable materials for the design of high-quality, durable asphalt mixture for noise-reducing asphalt pavements. The research showed that Granite A is the most suitable aggregate for the design of asphalt mixtures for noise-reducing asphalt pavement. Short-term and particularly long-term ageing of polymer modified bituminous binder PMB 45/80-65 and PMB 25/55-60 decreases the number of aromatics and increases the amount of resins. Based on Multiple Stress Creep and Recovery test results, it is assumed that all bituminous binders selected for research are suitable for the asphalt mixture design of noise-reducing asphalt pavement in terms of resistance to rutting. However, considering all tests results, bituminous binder PMB 45/80-65 (1) showed the best performance and was the most suitable for the asphalt mixture design of noise-reducing asphalt pavement.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Chenfeng Chu ◽  
Jing Zhu ◽  
Zi-ang Wang

AH-30 is a type of high-viscosity matrix asphalt. The asphalt mixture made by AH-30 as a binder has an excellent antirutting performance. However, the other road performance of AH-30 was still worthy of attention. This research aims to reveal the properties of AH-30 and its impact on the road performance of asphalt mixtures (AH30-AC20/25). The AH-70 neat asphalt and SBS modified asphalt were prepared for comparison. The high-temperature sensitivity and fatigue resistance of AH-30 are evaluated by the dynamic shear rheological (DSR) test. The low-temperature performance is evaluated by the bending beam rheometer (BBR) test. The high-temperature stability (HTS) of AH30-AC20/25 is carried out by the wheel tracking (WT) test and the repeated shear constant height (RSCH) test. The low-temperature crack resistance (LTCR) is carried out by the direct stretching (DS) test. The fatigue property is carried out by the three-point bending test. Water stability (WS) is carried out by the Marshall residual stability (MRS) and the intensity ratio of the frozen and melted (IRFM) test. The test results show that the high-temperature resistance of AH-30 is better than that of AH-70. The low-temperature crack resistance of AH-30 is equivalent to that of AH-70. The AH-30 as a binder can meet the requirements of the roads, which are located at a minimum temperature of not less than −10.5°C in winter. The fatigue property of the AH-30 asphalt mixture is poor, which may be one reason why AH-30 asphalt pavement is more prone to cracking. The water stability of the AH30-AC (20/25) asphalt mixture can meet the specification requirements, and AH30-AC20 is better than the other two asphalt mixtures. The research of this paper will provide a basis and reference for the popularization and application of AH-30 in asphalt pavement.


2021 ◽  
Vol 1023 ◽  
pp. 121-126
Author(s):  
Van Bach Le ◽  
Van Phuc Le

Although small amount of binder in asphalt concrete mixture may commonly range from 3.5 to 5.5% of total mixture as per many international specifications, it has a significant impact on the total cost of pavement construction. Therefore, this paper investigated the effects of five carbon nanotubes contents of 0.05%, 0.1%, 0.15%, 0.2%, 0.25% by asphalt weight as an additive material for binder on performance characteristics of asphalt mixtures. Performance properties of CNTs modified asphalt mixtures were investigated through the Marshall stability (MS) test, indirect tensile (IDT) test, static modulus (SM) test, wheel tracking (WT) test. The results indicated that asphalt mixtures with CNT modified binder can improve both the rutting performance, IDT strength and marshall stability of tested asphalt mixtures significantly at higher percentages of carbon nanotubes. However, the issue that should be considered is the construction cost of asphalt pavement. Based on the asphalt pavement structural analysis and construction cost, it can be concluded that an optimum CNT content of 0.1% by asphalt weight may be used as additive for asphalt binder in asphalt mixtures.


2011 ◽  
Vol 105-107 ◽  
pp. 810-817 ◽  
Author(s):  
Rong Hui Zhang ◽  
Jia Liu ◽  
Jian Chao Huang ◽  
Yi Fu

To solve the high-temperature rutting problem of asphalt pavement, the old rubber of the tire rubber and plastic of general polyethylene waste composite modified asphalt mixture is proposed. The plastic and rubber compound particle was made by the rubber through efficient desulfurization additives, pre-swelling, twin-screw extrusion equipment. The particles mixed with the asphalt mixtures specimen preparation and the dynamic stability experiments, composite beam fatigue experiments, flexural tensile strength and modulus experiments and anti-reflective pavement cracks and other mechanical experiments are performed. The comparative data obtained by the rubber and plastic composited modified asphalt mixtures and SBS asphalt mixtures prove that the rubber and plastic composited modified asphalt mixtures have excellent rutting resistance and fatigue resistance.


2011 ◽  
Vol 243-249 ◽  
pp. 4112-4118
Author(s):  
Min Jiang Zhang ◽  
Gang Chen ◽  
Li Xia Hou ◽  
Li Ping Zhang

Based on the viscoelasticity theory and the data of creep test, Burgers model was established, which was used to study the viscoelastic property of SBR asphalt mixtures, and the viscoelastic constitutive relation was obtained. Using the finite element method, the temperature stresses field was calculated under the environmental conditions and the thermal stresses of SBR modified asphalt pavement was given at the last part of this paper. The study indicated that SBR modified asphalt mixtures have the advantage over common asphalt mixture in low-temperature performance.


2013 ◽  
Vol 668 ◽  
pp. 292-296
Author(s):  
Ya Li Ye ◽  
Chuan Yi Zhuang ◽  
Jia Bo Hu

With the early asphalt pavements have been into the stage of medium maintenance or overhaul, recycling is a very important way for waste asphalt mixtures. A sample was taken in the expressway from Huhhot to Baotou, and the waste mixtures were extracted from field and sieved; so that the new aggregates can be determined and mix design was carried. With the aid of the penetration, the softening point and the viscosity in 135°C test, the quantity of the regenerant and the asphalt content were ascertained. Through the high temperature stable performance, the anti-low temperature performance, the water stability and the Hamburg wheel-tracking test, the appropriate gradation and the optimum asphalt content were determined. The test results showed that the pavement performance of the waste asphalt mixture was enhanced obviously with hot in-place recycling, and it has achieved technical parameters for old asphalt mixture.


Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4496
Author(s):  
Jiahao Tian ◽  
Sang Luo ◽  
Ziming Liu ◽  
Xu Yang ◽  
Qing Lu

To address the severe distresses of asphalt pavement, a new type of pavement maintenance treatment, porous ultra-thin overlay (PUTO) with small particle size was proposed. The PUTO has a thickness of 1.5–2.5 cm and a large void ratio of 18–25%. As a newly asphalt mixture, the structure characteristics differ from poor traditional pavement. Therefore, it is necessary to investigate the fabrication schemes in laboratory and on-site, respectively. In this study, the optimal fabrication schemes, including compaction temperature and number of blows of PUTO were determined based on Cantabro test and volumetric parameters. Then, the corresponding relationship between laboratory and on-site compaction work was then established based on the energy equivalent principle. On this basis, the numbers of on-site rolling passes and the combination method were calculated. The results show that increased compaction temperature and number of blows reduce the height and enhance the compaction of the Marshall sample. With the same temperature and number of blows, the raveling resistance of coarse gradation, Pavement Asphalt Concrete-1 (PAC-1) is better than that of fine gradation, Pavement Asphalt Concrete-2 (PAC-2), and the increased asphalt viscosity significantly improves the raveling resistance of the asphalt mixture. To ensure the scattering resistance and volumetric characteristic, the initial compaction temperature of the PAC-1 and PAC-2 should not be lower than 150 °C and 165 °C, respectively. Then, the laboratory compaction work and on-site compaction work were calculated and converted based on the principle of energy equivalence. Consequently, the on-site compaction combination of rolling machines for four asphalt mixtures was determined. According to the volumetric parameters, the paving test section proved that the construction temperature and the on-site rolling combination determined by laboratory tests are reasonable, and ultra-thin overlay has good structural stability, drainage, and skid resistance.


2012 ◽  
Vol 256-259 ◽  
pp. 1807-1812 ◽  
Author(s):  
Qing Yi Xiao ◽  
Hong Jun Cui ◽  
Ning Li Li ◽  
Cai Li Zhang

Ice layer on pavement surface was a serious problem for highway traffic safety. Crumbed rubber asphalt mixture was an effective way to drive ice layer away from surface. Through wheel test asphalt mixture specimen with ice layer at negtive temperature, the paper studied ice breaking performance of asphalt mixtures containing different amount crumbed rubber. Pendulumlike friction test BPN after wheel test was taken as an performance index of crumber rubber asphalt breaking ice. Results shown that the quantity of crumbed rubber and the performance of ice breaking had good linear relationship and more rubber content had better slide resistance recover speed at same wheel arround number.Through numerial model of pavement covered ice based on FEM method, the paper had analyzed the relationship between elastic modulus of crumbed rubber pavement and ice stress-strain on pavement, and put forward the mechanism of ice breaking.


2012 ◽  
Vol 204-208 ◽  
pp. 1593-1598
Author(s):  
Hong Mei Li ◽  
Wen Fang Liu

In this paper, firstly, based on asphalt pavement central layer, the comparison with the foreign related gradation of asphalt mixtures, one typical kinds of gradations are decided; Secondly, the asphalt aggregate ratio is predicted based on professor Lin’s Theory , and five asphalt aggregate ratio are selected. Finally, the road performance of asphalt mixture is experimented, and the road performance of five asphalt aggregate ratio is analyzed. As a result, we can predict the range of the optimum asphalt aggregate ratio based on the road performance.


Sign in / Sign up

Export Citation Format

Share Document