scholarly journals Selection of Constituent Materials for Asphalt Mixtures of Noise-Reducing Asphalt Pavements

2019 ◽  
Vol 14 (2) ◽  
pp. 178-207 ◽  
Author(s):  
Audrius Vaitkus ◽  
Ovidijus Šernas ◽  
Viktoras Vorobjovas ◽  
Judita Gražulytė

Road traffic noise is a widespread problem, especially in the densely populated cities of Europe. Exposure to high levels of (traffic) noise leads to health problems, such as stress, sleep disturbance and even heart diseases. Noise-reducing asphalt pavements are more frequently developed and selected as a first noise abatement solution. Performance of noise-reducing asphalt pavement depends on the composition and properties of asphalt mixture components, and pavement properties such as layer thickness, voids in pavement, texture. Design of asphalt mixture for the noise-reducing asphalt pavements is even more complicated for severe and cold climate regions where significant temperature fluctuations and many of frost-thaw cycles occur. Thus, the balance between mechanical and acoustical durability depends on the proper selection of asphalt mixture components. Components of these asphalt mixtures have primarily to be tested to determine their physical and mechanical properties. The main aim of this research is to evaluate properties of local aggregates, bituminous binders, and regarding test results, select the most suitable materials for the design of high-quality, durable asphalt mixture for noise-reducing asphalt pavements. The research showed that Granite A is the most suitable aggregate for the design of asphalt mixtures for noise-reducing asphalt pavement. Short-term and particularly long-term ageing of polymer modified bituminous binder PMB 45/80-65 and PMB 25/55-60 decreases the number of aromatics and increases the amount of resins. Based on Multiple Stress Creep and Recovery test results, it is assumed that all bituminous binders selected for research are suitable for the asphalt mixture design of noise-reducing asphalt pavement in terms of resistance to rutting. However, considering all tests results, bituminous binder PMB 45/80-65 (1) showed the best performance and was the most suitable for the asphalt mixture design of noise-reducing asphalt pavement.

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5523
Author(s):  
Jingsheng Pan ◽  
Hua Zhao ◽  
Yong Wang ◽  
Gang Liu

The influence of sand accumulation on the skid resistance of asphalt pavement was studied. Many scholars have researched the anti-skid performance of conventional asphalt pavements. However, there is a lack of research on the anti-skid performance of desert roads under the condition of sand accumulation. In this study, AC-13 and AC-16 asphalt mixtures were used. The British Pendulum Number (BPN) under different sand accumulations was measured with a pendulum friction coefficient meter, and the Ames engineering texture scanner was used to obtain different sand accumulations. The texture index of asphalt mixture was used to study the macro and micro texture of asphalt pavement under different amounts of sand accumulation, and the degree of influence of different particle sizes on BPN was obtained through gray correlation analysis. The test results show that the presence of aeolian sand has a significant impact on the macro and micro texture of the asphalt pavement and will cause the anti-skid performance to decrease. Moreover, there is an apparent positive linear correlation between the road surface texture index and BPN. The research results may provide reference and reference for the design and maintenance of desert highways.


2016 ◽  
Vol 15 (1) ◽  
pp. 157-167 ◽  
Author(s):  
Wojciech Bańkowski ◽  
Dariusz Sybilski ◽  
Jan Król ◽  
Karol Kowalski ◽  
Piotr Radziszewski ◽  
...  

A responsible recycling of asphalt pavements is crucial in terms of economic and ecological measures related to preservation of non-renewable resources of bituminous binders and aggregates. Leading countries in road industry endeavour to maximise reclaimed asphalt pavement (RAP) application in production of new asphalt mixtures. Unfortunately, RAP re-using in Poland is limited and often results in construction works related to verge tabilization or construction of a subbase in mineral-cement-emulsion (MCE) technology. Application of RAP in asphalt mixture production, if happened, would be restricted to cold RAP addition in a limited amount only. The aforementioned situation is mostly related to lack of contractor’s experience, HMA plants not equipped with the necessary installation, agencies restrictions, tender conditions, problems with RAP homogeneity and others.This paper presents InnGA research project in which the main goal was to develop the asphalt mixtures with as high as possible RAP content without compromising mixture performance. Project and its dissemination should provide necessary know-how to road authorities, agencies, design offices and contractors.


2013 ◽  
Vol 668 ◽  
pp. 292-296
Author(s):  
Ya Li Ye ◽  
Chuan Yi Zhuang ◽  
Jia Bo Hu

With the early asphalt pavements have been into the stage of medium maintenance or overhaul, recycling is a very important way for waste asphalt mixtures. A sample was taken in the expressway from Huhhot to Baotou, and the waste mixtures were extracted from field and sieved; so that the new aggregates can be determined and mix design was carried. With the aid of the penetration, the softening point and the viscosity in 135°C test, the quantity of the regenerant and the asphalt content were ascertained. Through the high temperature stable performance, the anti-low temperature performance, the water stability and the Hamburg wheel-tracking test, the appropriate gradation and the optimum asphalt content were determined. The test results showed that the pavement performance of the waste asphalt mixture was enhanced obviously with hot in-place recycling, and it has achieved technical parameters for old asphalt mixture.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Haitao Zhang ◽  
Mingyang Gong ◽  
Jian Wu ◽  
Quansheng Sun

Traditional discontinuous paving technology of asphalt pavement is to pave and compact with two different gradation asphalt mixtures in the upper and lower layers, respectively, so the interlayer contact state of asphalt mixture is the major issue of pavement structure. Meanwhile, the continuous paving technology is to pave and compact with two different gradation asphalt mixtures in the upper and lower layers simultaneously, which can solve the issue of interlayer contact appropriately. In order to contrast the shear performance of the structural layer based on continuous and discontinuous paving technology, in this project, through simulating site construction, the double-deck Marshall and rut specimens are prepared based on two different gradation asphalt mixtures simultaneously, and the mechanical and interlayer shear performances of asphalt mixtures under continuous and discontinuous paving technology are tested at room temperature, low temperature, and freeze-thaw. The test results show that the mechanical and interlayer shear performance of continuous paving asphalt mixtures is better than that of discontinuous paving asphalt mixture. The findings can provide a certain technical basis for the design of continuous paving asphalt pavement.


2021 ◽  
Vol 1023 ◽  
pp. 121-126
Author(s):  
Van Bach Le ◽  
Van Phuc Le

Although small amount of binder in asphalt concrete mixture may commonly range from 3.5 to 5.5% of total mixture as per many international specifications, it has a significant impact on the total cost of pavement construction. Therefore, this paper investigated the effects of five carbon nanotubes contents of 0.05%, 0.1%, 0.15%, 0.2%, 0.25% by asphalt weight as an additive material for binder on performance characteristics of asphalt mixtures. Performance properties of CNTs modified asphalt mixtures were investigated through the Marshall stability (MS) test, indirect tensile (IDT) test, static modulus (SM) test, wheel tracking (WT) test. The results indicated that asphalt mixtures with CNT modified binder can improve both the rutting performance, IDT strength and marshall stability of tested asphalt mixtures significantly at higher percentages of carbon nanotubes. However, the issue that should be considered is the construction cost of asphalt pavement. Based on the asphalt pavement structural analysis and construction cost, it can be concluded that an optimum CNT content of 0.1% by asphalt weight may be used as additive for asphalt binder in asphalt mixtures.


2011 ◽  
Vol 105-107 ◽  
pp. 810-817 ◽  
Author(s):  
Rong Hui Zhang ◽  
Jia Liu ◽  
Jian Chao Huang ◽  
Yi Fu

To solve the high-temperature rutting problem of asphalt pavement, the old rubber of the tire rubber and plastic of general polyethylene waste composite modified asphalt mixture is proposed. The plastic and rubber compound particle was made by the rubber through efficient desulfurization additives, pre-swelling, twin-screw extrusion equipment. The particles mixed with the asphalt mixtures specimen preparation and the dynamic stability experiments, composite beam fatigue experiments, flexural tensile strength and modulus experiments and anti-reflective pavement cracks and other mechanical experiments are performed. The comparative data obtained by the rubber and plastic composited modified asphalt mixtures and SBS asphalt mixtures prove that the rubber and plastic composited modified asphalt mixtures have excellent rutting resistance and fatigue resistance.


2015 ◽  
Vol 9 (1) ◽  
pp. 962-967
Author(s):  
Hongchang Wang ◽  
Minggang Zhou ◽  
Ming Li ◽  
Kunitomo Sugiura

Porous asphalts pavement arouses the attentions of the world by its good performance such as reduce the potential for hydroplaning, reduce splash and spray, improve visibility, decline traffic noise, and improve driving safety. But the void clogging lessens its durable function. So in this paper appropriate clogging agent was choose, and seepage coefficients were tested by using asphalt mixture pavement surface permeameter to simulation multi-cycle drainage clogging test. The influence of asphalt mixture design parameter such as the porosity, the maximum sizes of the aggregate, gradation and asphalt on the drainage and counter-clogging ability of porous asphalts was researched. The tests indicated that the porosity has an obvious influence on both porous asphalts’ permeable ability and counter-clogging ability. Comparing the specimen of 21% void to the ones of 16% void, the drain ability is improved 49.8%, the counter-clogging ability is improved 55.0%. The maximum sizes of the aggregate has an obvious influence on porous asphalts’ counter-clogging ability, but no an obvious influence on the drain ability. Comparing the specimen of 16mm to the 13mm, the counterclogging ability is proved 48%. PAC with the coarser graduation has a better performance on drain and counter-clogging ability. TPS modifier changes PAC little on drain and counter-clogging ability.


2021 ◽  
Vol 16 (2) ◽  
pp. 48-65
Author(s):  
Audrius Vaitkus ◽  
Judita Gražulytė ◽  
Andrius Baltrušaitis ◽  
Jurgita Židanavičiūtė ◽  
Donatas Čygas

Properly designed and maintained asphalt pavements operate for ten to twenty-five years and have to be rehabilitated after that period. Cold in-place recycling has priority over all other rehabilitation methods since it is done without preheating and transportation of reclaimed asphalt pavement. Multiple researches on the performance of cold recycled mixtures have been done; however, it is unclear how the entire pavement structure (cold recycled asphalt pavement overlaid with asphalt mixture) performs depending on binding agents. The main objective of this research was to evaluate the performance of cold in-place recycled asphalt pavements considering binding agents (foamed bitumen in combination with cement or only cement) and figure out which binder leads to the best pavement performance. Three road sections rehabilitated in 2000, 2003, and 2005 were analysed. The performance of the entire pavement structure was evaluated in terms of the International Roughness Index, rut depth, and pavement surface distress in 2013 and 2017.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yanhui Zhong ◽  
Yilong Wang ◽  
Bei Zhang ◽  
Xiaolong Li ◽  
Songtao Li ◽  
...  

The rapid detection of asphalt content in asphalt mixture is of great significance to the quality evaluation of asphalt pavement. Based on the dielectric properties of an asphalt mixture, the prediction model of asphalt content is deduced theoretically using three types of dielectric models: Lichtenecker-Rother (L-R) model, Rayleigh model, and Bottcher equation. Under the condition of laboratory mixing at room temperature (about 20–25°C), a dielectric test of asphalt mixture is conducted to verify the applicability of the model. The test results indicate that the dielectric constant of the asphalt mixture is inversely proportional to the asphalt content and directly proportional to the aggregate size of the mixture. Among the models, the Rayleigh model has a wide range of applications and exhibits a high accuracy, with an average relative error of only 1.86%. The results provide a theoretical basis for the nondestructive testing of asphalt pavements using ground-penetrating radar.


2011 ◽  
Vol 243-249 ◽  
pp. 4112-4118
Author(s):  
Min Jiang Zhang ◽  
Gang Chen ◽  
Li Xia Hou ◽  
Li Ping Zhang

Based on the viscoelasticity theory and the data of creep test, Burgers model was established, which was used to study the viscoelastic property of SBR asphalt mixtures, and the viscoelastic constitutive relation was obtained. Using the finite element method, the temperature stresses field was calculated under the environmental conditions and the thermal stresses of SBR modified asphalt pavement was given at the last part of this paper. The study indicated that SBR modified asphalt mixtures have the advantage over common asphalt mixture in low-temperature performance.


Sign in / Sign up

Export Citation Format

Share Document