scholarly journals Combination of Broccoli Sprout Extract and Zinc Provides Better Protection against Intermittent Hypoxia-Induced Cardiomyopathy Than Monotherapy in Mice

2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Jiqun Wang ◽  
Jian Zhang ◽  
Liping Chen ◽  
Jun Cai ◽  
Zhijie Li ◽  
...  

Nuclear factor-E2-related factor 2 (Nrf2) and metallothionein have each been reported to protect against chronic intermittent hypoxia- (IH-) induced cardiomyopathy. Sulforaphane-rich broccoli sprout extract (BSE) and zinc can effectively induce Nrf2 and metallothionein, respectively, to protect against IH-induced cardiomyopathy via antioxidative stress. However, whether the cardiac protective effects of the combination of BSE and zinc can be synergistic or the same has not been evaluated. In this study, we treated 8-week-old C57BL/6J mice with BSE and/or zinc during exposure to IH for 8 weeks. Cardiac dysfunction, as determined by echocardiography, and pathological remodeling and abnormalities, including cardiac fibrosis, inflammation, and oxidative damage, examined by histopathology and western blotting, were clearly observed in IH mice but were not significant in IH mice treated with either BSE, zinc, or zinc/BSE. Furthermore, the effects of the combined treatment with BSE and zinc were always greater than those of single treatments. Nrf2 function and metallothionein expression in the heart increased to a greater extent using the combination of BSE and zinc than using BSE or zinc alone. These findings for the first time indicate that the dual activation of Nrf2 and metallothionein by combined treatment with BSE and zinc may be more effective than monotherapy at preventing the development of IH-induced cardiomyopathy.

Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1184 ◽  
Author(s):  
Peng Guan ◽  
Zhi-Min Sun ◽  
Li-Fei Luo ◽  
Ya-Shuo Zhao ◽  
Sheng-Chang Yang ◽  
...  

Iron-induced oxidative stress has been found to be a central player in the pathogenesis of kidney injury. Recent studies have indicated H2 can be used as a novel antioxidant to protect cells. The present study was designed to investigate the protective effects of H2 against chronic intermittent hypoxia (CIH)-induced renal injury and its correlation mechanism involved in iron metabolism. We found that CIH-induced renal iron overloaded along with increased apoptosis and oxidative stress. Iron accumulates mainly occurred in the proximal tubule epithelial cells of rats as showed by Perl’s stain. Moreover, we found that CIH could promote renal transferrin receptor and divalent metal transporter-1 expression, inhibit ceruloplasmin expression. Renal injury, apoptosis and oxidative stress induced by CIH were strikingly attenuated in H2 treated rats. In conclusion, hydrogen may attenuate CIH-induced renal injury at least partially via inhibiting renal iron overload.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Cheng-Zhi Chai ◽  
Wei-Lan Mo ◽  
Xian-Fei Zhuang ◽  
Jun-Ping Kou ◽  
Yong-Qing Yan ◽  
...  

Right ventricular (RV) dysfunction and failure contribute to the increasing morbidity and mortality of cardiovascular diseases; however, current treatment strategies are grossly inadequate. Sheng-Mai-San (SMS) has been used to treat heart diseases for hundreds of years in China, and its protective effects on RV have not been observed. The present study was to investigate the protective effects of SMS aqueous extract on RV dysfunction in chronic intermittent hypoxia (CIH) mice model. The results showed that CIH mice model presented RV dysfunction and maladaptive compensation after 28-day-CIH and SMS treatment significantly reversed these changes. Diastolic function of RV was restored and systolic dysfunction was attenuated, including elevation of RV stroke volume and fractional shortening, as well as pulmonary circulation. Structurally, SMS treatment inhibited RV dilation, cardiomyocytes vacuolization, ultrastructure abnormalities, and the expression of cleaved caspase-3. Of importance, SMS showed remarkable antioxidant activity by decreasing the levels of malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), increasing the levels of superoxide dismutase (SOD) and heme oxygenase-1 (HO-1), as well as inhibiting the overexpression of 3-NT in RV. Our results indicate that SMS preserve RV structure and function in CIH-exposed mice by involving regulation in both ROS and Reactive Nitrogen Species (RNS) production.


Antioxidants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1624
Author(s):  
Ji-Won Hwang ◽  
Jae-Hyun Park ◽  
Bong-Woo Park ◽  
Hyeok Kim ◽  
Jin-Ju Kim ◽  
...  

Reactive oxygen species (ROS) and intracellular iron levels are critical modulators of lipid peroxidation that trigger iron-dependent non-apoptotic ferroptosis in myocardial ischemia-reperfusion (I/R) injury. Histochrome (HC), with a potent antioxidant moiety and iron-chelating capacity, is now available in clinical practice. However, limited data are available about the protective effects of HC on ferroptotic cell death in myocardial I/R injury. In this study, we investigated whether the intravenous administration of HC (1 mg/kg) prior to reperfusion could decrease myocardial damage by reducing ferroptosis. Rats undergoing 60 min of ischemia and reperfusion were randomly divided into three groups as follows: (1) Sham, (2) I/R control, and (3) I/R + HC. Serial echocardiography up to four weeks after I/R injury showed that intravenous injection of HC significantly improved cardiac function compared to the I/R controls. In addition, the hearts of rats who received intravenous injection of HC exhibited significantly lower cardiac fibrosis and higher capillary density. HC treatment decreased intracellular and mitochondrial ROS levels by upregulating the expression of nuclear factor erythroid 2-related factor (Nrf2) and its downstream genes. HC also inhibited erastin- and RSL3-induced ferroptosis in rat neonatal cardiomyocytes by maintaining the intracellular glutathione level and through upregulated activity of glutathione peroxidase 4. These findings suggest that early intervention with HC before reperfusion rescued myocardium from I/R injury by preventing ferroptotic cell death. Therefore, HC is a promising therapeutic option to provide secondary cardioprotection in patients who undergo coronary reperfusion therapy.


2019 ◽  
Vol 16 (1) ◽  
pp. 57-65 ◽  
Author(s):  
Tahereh Farkhondeh ◽  
Hanieh Shaterzadeh Yazdi ◽  
Saeed Samarghandian

Background: The therapeutic strategies to manage neurodegenerative diseases remain limited and it is necessary to discover new agents for their prevention and control. Oxidative stress and inflammation play a main role in the pathogenesis of neurodegenerative diseases. The aim of this study is to review the effects of green tea catechins against the Neurodegenerative Diseases. Methods: In this study, we extensively reviewed all articles on the terms of Green tea, catechins, CNS disorders, and different diseases in PubMed, Science Direct, Scopus, and Google Scholar databases between the years 1990 and 2017. Results: The present study found that catechins, the major flavonoids in green tea, are powerful antioxidants and radical scavengers which possess the potential roles in the management of neurodegenerative diseases. Catechins modulate the cellular and molecular mechanisms through the inflammation-related NF-&amp;#954;B and the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways. Conclusion: The findings of the present review shows catechins could be effective against neurodegenerative diseases due to their antioxidation and anti-inflammation effects and the involved biochemical pathways including Nrf2 and NF-kB signaling pathways.<P&gt;


2021 ◽  
pp. 1-9
Author(s):  
Hongmei Zhao ◽  
Yun Qiu ◽  
Yichen Wu ◽  
Hong Sun ◽  
Sumin Gao

<b><i>Introduction/Aims:</i></b> Hydrogen sulfide (H<sub>2</sub>S) is considered to be the third most important endogenous gasotransmitter in organisms. GYY4137 is a long-acting donor for H<sub>2</sub>S, a gas transmitter that has been shown to prevent multi-organ damage in animal studies. We previously reported the effect of GYY4137 on cardiac ischaemia reperfusion injury (IRI) in diabetic mice. However, the role and mechanism of GYY4137 in renal IRI are poorly understood. The aims of this study were to determine whether GYY4137 can effectively alleviate the injury induced by renal ischaemia reperfusion and to explore its possible mechanism. <b><i>Methods:</i></b> Mice received right nephrectomy and clipping of the left renal pedicle for 45 min. GYY4137 was administered by intraperitoneal injection for 2 consecutive days before the operation. The model of hypoxia/reoxygenation injury was established in HK-2 cells, which were pre-treated with or without GYY4137. Renal histology, function, apoptosis, and oxidative stress were measured. Western blot was used to measure the target ­protein after renal IRI. <b><i>Results:</i></b> The results indicated that GYY4137 had a clear protective effect on renal IRI as reflected by the attenuation of renal dysfunction, renal tubule injury, and apoptosis. Moreover, GYY4137 remarkably reduced renal IRI-induced oxidative stress. GYY4137 significantly elevated the nuclear translocation of nuclear factor-erythroid-2-related factor 2 (Nrf2) and the expression of antioxidant enzymes regulated by Nrf2, including SOD, HO-1, and NQO-1. <b><i>Conclusions:</i></b> GYY4137 alleviates ischaemia reperfusion-induced renal injury through activating the antioxidant effect mediated by Nrf2 signalling.


2021 ◽  
Vol 11 (1) ◽  
pp. 390
Author(s):  
Beom-Rak Choi ◽  
Il-Je Cho ◽  
Su-Jin Jung ◽  
Jae-Kwang Kim ◽  
Dae-Geon Lee ◽  
...  

Lemon balm and dandelion are commonly used medicinal herbs exhibiting numerous pharmacological activities that are beneficial for human health. In this study, we explored the protective effects of a 2:1 (w/w) mixture of lemon balm and dandelion extracts (MLD) on carbon tetrachloride (CCl4)-induced acute liver injury in mice. CCl4 (0.5 mL/kg; i.p.) injection inhibited body weight gain and increased relative liver weight. Pre-administration of MLD (50–200 mg/kg) for 7 days prevented these CCl4-mediated changes. In addition, histopathological analysis revealed that MLD synergistically alleviated CCl4-mediated hepatocyte degeneration and infiltration of inflammatory cells. MLD decreased serum aspartate aminotransferase and alanine transferase activities and reduced the number of liver cells that stained positive for cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase, suggesting that MLD protects against CCl4-induced hepatic damage via the inhibition of apoptosis. Moreover, MLD attenuated CCl4-mediated lipid peroxidation and protein nitrosylation by restoring impaired hepatic nuclear factor erythroid 2-related factor 2 mRNA levels and its dependent antioxidant activities. Furthermore, MLD synergistically decreased mRNA and protein levels of tumor necrosis factor-α, interleukin-1β, and interleukin-6 in the liver. Together, these results suggest that MLD has potential for preventing acute liver injury by inhibiting apoptosis, oxidative stress, and inflammation.


Sign in / Sign up

Export Citation Format

Share Document