scholarly journals Improvement of the Bonding Properties of Mineral Trioxide Aggregate by Elastin-Like Polypeptide Supplementation

Scanning ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Hyun-Jung Kim ◽  
Donghyun Lee ◽  
Seungryong Cho ◽  
Ji-Hyun Jang ◽  
Sahng Gyoon Kim ◽  
...  

Introduction. Elastin-like polypeptide (ELP) supplementation was previously reported to enhance the physical properties of mineral trioxide aggregate (MTA). The aim of this study was to investigate the effect of ELP supplementation on the bonding properties of MTA to dentin. Methods. Two types of ELPs were synthesized and mixed with MTA in a 0.3 liquid/powder ratio. The push-out bond strength test and interfacial observation with scanning electron microscopy were performed for ELP-supplemented MTA. The porosity of MTA fillings in the cavity was observed with microcomputed tomography. The stickiness, flow rate, and contact angle were additionally measured for potential increased bonding properties. Results. ELP supplementation improved the bond strength of MTA to dentin. MTA supplemented by a specific ELP exhibited a less porous structure, higher stickiness, and higher flow rate. ELPs also decreased the contact angle to dentin. Conclusions. This research data verifies that ELP improves the bonding properties of MTA to a tooth structure. The sticky and highly flowable characteristics of ELP-supplemented MTA may provide intimate contact with dentin and supply a less porous cement structure, which might improve the bonding properties of MTA.

2020 ◽  
Author(s):  
Hyun-Jung Kim ◽  
Ji-Hyun Jang ◽  
Sun-Young Kim

Abstract Although mineral trioxide aggregates (MTA) have been adopted as an endodontic sealer because of excellent sealing effect and bioactive property and been modified with improvement of its characteristics, the developed MTA sealers have not yet satisfied all the ideal requirements of endodontic sealers. The aim of this study was to assess the characteristics of elastin-like polypeptide (ELP)-incorporated MTA for use as an endodontic sealer and compare them with those of commercial MTA sealers. Two commercial MTA sealers and three experimental ELP-incorporated MTA sealers with 0.3, 0.4, and 0.5 liquid/powder (L/P) ratio for 10 wt% ELP liquid were evaluated. The push-out bond strength, flow rate, sealer penetrability and wash-out resistance were tested and the sealer-dentin interface was observed using a scanning electron microscope (SEM). Our study revealed the ELP-incorporated MTA exhibited the higher push-out bond strength, flow rate, sealer penetration and remarkable wash-out resistance than commercial MTA sealers, especially in 0.4 L/P ratio. The groups of ELP-based experimental sealers also exhibited more intimate contact with dentin compared to the commercial MTA sealers. Our research will suggest the possible adoption of the ELP-incorporated MTA as endodontic sealer for clinical use.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hyun-Jung Kim ◽  
Ji-Hyun Jang ◽  
Sun-Young Kim

AbstractAlthough mineral trioxide aggregates (MTA) have been adopted as an endodontic sealer because of excellent sealing effect and bioactive property and been modified with improvement of its characteristics, the developed MTA sealers have not yet satisfied all the ideal requirements of endodontic sealers. The aim of this study was to assess the characteristics of elastin-like polypeptide (ELP)-incorporated MTA for use as an endodontic sealer and compare them with those of commercial MTA sealers. Two commercial MTA sealers and three experimental ELP-incorporated MTA sealers with 0.3, 0.4, and 0.5 liquid/powder (L/P) ratio for 10 wt% ELP liquid were evaluated. The push-out bond strength, flow rate, sealer penetrability and wash-out resistance were tested and the sealer-dentin interface was observed using a scanning electron microscope (SEM). Our study revealed the ELP-incorporated MTA sealer, especially in 0.4 L/P ratio, exhibited the higher push-out bond strength and flow rate (P < 0.05), and equal or superior sealer penetration and remarkable wash-out resistance compared to commercial MTA sealers. The groups of ELP-based experimental sealers also exhibited more intimate contact with dentin compared to the commercial MTA sealers. Our research will suggest the possible adoption of the ELP-incorporated MTA as endodontic sealer for clinical use.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1555
Author(s):  
Firas Alqarawi ◽  
Mazen Alkahtany ◽  
Khalid Almadi ◽  
Afnan Gassem ◽  
Faris Alshahrani ◽  
...  

The present study aimed to synthesize and equate the mechanical properties and dentin interaction of two adhesives; experimental adhesive (EA) and 5 wt.% reduced graphene oxide rGO) containing adhesive. Scanning electron microscopy (SEM)-Energy-dispersive X-ray spectroscopy (EDX), Micro-Raman spectroscopy, push-out bond strength test, and Fourier Transform Infrared (FTIR) spectroscopy were employed to study nano-bond strength, degree of conversion (DC), and adhesive-dentin interaction. The EA was prepared, and rGO particles were added to produce two adhesive groups, EA-rGO-0% (control) and rGO-5%. The canals of sixty roots were shaped and prepared, and fiber posts were cemented. The specimens were further alienated into groups based on the root canal disinfection technique, including 2.5% sodium hypochlorite (NaOCl), Photodynamic therapy (PDT), and ER-CR-YSGG laser (ECYL). The rGO nanoparticles were flake-shaped, and EDX confirmed the presence of carbon (C). Micro-Raman spectroscopy revealed distinct peaks for graphene. Push-out bond strength test demonstrated highest values for the EA-rGO-0% group after NaOCl and PDT conditioning whereas, rGO-5% showed higher values after ECYL conditioning. EA-rGO-0% presented greater DC than rGO-5% adhesive. The rGO-5% adhesive demonstrated comparable push-out bond strength and rheological properties to the controls. The rGO-5% demonstrated acceptable DC (although lower than control group), appropriate dentin interaction, and resin tag establishment.


2020 ◽  
Vol 27 (3) ◽  
Author(s):  
Esma Saricam ◽  
◽  
Neslihan Bulak ◽  
Esra Özyurt ◽  
Suat Özcan ◽  
...  

Eliminating microorganisms in the root canal system is important for the success of regenerative endodontics. Objective: This study evaluated the effects of different antibiotic pastes used for regenerative endodontic procedures on dentin microhardness and the push-out bond strength of mineral trioxide aggregate (MTA) to root canal dentin. Methods: Sixty-four maxillary central incisors were instrumented and randomly divided into the following four groups (n = 16) for medicament treatment: triple antibiotic paste, amoxicillin+clavulanic acid, cefaclor, and control (no dressing). After 21 days, two root segments were obtained by sectioning the roots horizontally for push-out and microhardness evaluations. MTA was placed into the root canal of the sectioned segment for the push-out test. In the microhardness evaluation, three indentations were made at 500 and 1,000 μm from the canal lumen. The arithmetic mean was then calculated for each distance. ANOVA with post hoc Scheffe test and t test were used for the statistical analyses. The significance level was set at p < 0.05. Results: No significant difference was found between the groups in terms of push-out bond strength (p > 0.05). Cefaclor and amoxicillin+clavulanic acid reduced the microhardness values of the dentin at 500 μm (p < 0.05) while cefaclor had the lowest value at 1,000 μm (p < 0.05). Conclusion: Cefaclor reduced the microhardness value more than the other medicaments did at a depth of 1,000 μm. The pastes provided similar adhesion of MTA.


2020 ◽  
Vol 10 (7) ◽  
pp. 2535
Author(s):  
Hyoung-Sik Kim ◽  
Song-Yi Yang ◽  
Eun Ha Choi ◽  
Kwang-Mahn Kim ◽  
Jae-Sung Kwon

The purpose of the study was to evaluate the adhesion between dental core resin and epoxy resin-based fiber post after treatment with non-thermal atmospheric pressure plasma (NTAPP) and compare with conventional methods of epoxy resin-based fiber post treatments. Contact angle was measured on the surface of epoxy resin before and after NTAPP treatment and X-ray photoelectron spectroscopy was used to analyze the surface chemistry. Finally, two shear bond strength tests were carried out; shear bond strength between core resin and epoxy resin for comparison between NTAPP treated and untreated sample, and push-out shear bond strength between core resin and NTAPP treated commercially available epoxy resin-based fiber post for comparison between NTAPP treated samples with conventionally treated samples. Contact angle on the surface of epoxy resin generally decreased with increasing NTAPP treatment time with presence of surface chemical changes. Also, there was significantly higher shear bond strength and push-out shear bond strength between epoxy resin and core resin for NTAPP treated epoxy resin, even to the conventionally treated epoxy resin-based fiber post with hydrofluoric acid or silane. In conclusion, new technology of NTAPP has potential for application on the epoxy resin-based fiber post to improve endodontic restoration success rate.


2015 ◽  
Vol 62 (1) ◽  
pp. 7-13 ◽  
Author(s):  
Sameer Makkar ◽  
Ruchi Vashisht ◽  
Anita Kalsi ◽  
Pranav Gupta

Summary Introduction Throughout the history of dentistry, a wide variety of materials such as gold-foil, silver posts, amalgam, zinc oxide eugenol, glass ionomer cements, mineral trioxide aggregate have been used as retrograde fillings. Altered pH in periapical lesions can affect push-out bond strength of these materials. The aim of this study was to evaluate the effect of altered pH on push-out bond strength of Biodentin, Glass ionomer cement (GIC), Mineral trioxide aggregate (MTA) and Theracal. Material and Methods Forty-eight dentin slices of extracted single-rooted human teeth were sectioned and their canal portion instrumented to achieve a diameter of 1.4 mm. The specimens were then assigned into the four groups (one group for each material) with 12 samples in each group. All groups were further divided into 3 subgroups (with 4 specimens in each subgroup): acidic (butyric acid buffered at pH 6.4), neutral (phosphate buffer saline solution at pH 7.4) and alkaline (buffered potassium hydroxide at pH 8.4). Samples were incubated for 4 days at 37°C in acidic, neutral or alkaline medium. Push-out bond strength was measured using a Universal Testing Machine. The slices were examined under a stereomicroscope to determine the nature of bond failure. Results GIC showed the highest bond strength (33.33MPa) in neutral and acidic medium (26.75MPa) compared to other materials. Biodentin showed the best result in alkaline medium. Conclusion Altered pH level affected push-out bond strength of root end materials. GIC demonstrated good push-out bond strength that increased with decrease of pH whereas newer materials Biodentin and Theracal showed satisfying results in altered pH.


2011 ◽  
Vol 66-68 ◽  
pp. 907-910 ◽  
Author(s):  
Xiao Lei Teng ◽  
Ming Wei Di

In this paper the surface of wood/polyethylene (PE) composites were treated by liquid oxidation, and the structure of surface for wood/polyethylene composites before and after treatment was characterized by contact angle, fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM); combined with bonding strength test, the effect of concentration for handling solution and addition of oxidant on bonding properties of wood/polyethylene composites was also investigated. The results showed that the contact angle of surface for wood/polyethylene composites reduced and the surface wettability had been improved after liquid oxidation; the -C-O- and C=O functional groups were formed on the treated surface and the surface roughness increased; meanwhile, the shear bonding strength for the treated sample increased significantly after treatment. And these changes would be more obvious when enhancing the concentration of handling solution and adding oxidant.


2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Jei Kim ◽  
Hyun-Jung Kim ◽  
Seok Woo Chang ◽  
Soram Oh ◽  
Sun-Young Kim ◽  
...  

Abstract Background The addition of bioactive glass (BG), a highly bioactive material with remineralization potential, might improve the drawback of weakening property of mineral trioxide aggregates (MTA) when it encounters with body fluid. This study aims to evaluate the effect of BG addition on physical properties of MTA. Methods ProRoot (MTA), and MTA with various concentrations of BG (1, 2, 5 and 10% BG/MTA) were prepared. Simulated body fluid (SBF) was used to investigate the effect of the storage solution on dentin remineralization. Prepared specimens were examined as following; the push-out bond strength to dentin, compressive strength, setting time solubility and X-ray diffraction (XRD) analysis. Results The 2% BG/MTA showed higher push-out bond strengths than control group after 7 days of SBF storage. The 2% BG/MTA exhibited the highest compressive strength. Setting times were reduced in the 1 and 2% BG/MTA groups, and solubility of all experimental groups were clinically acceptable. In all groups, precipitates were observed in dentinal tubules via SEM. XRD showed the increased hydroxyapatite peaks in the 2, 5 and 10% BG/MTA groups. Conclusion It was verified that the BG-added MTA increased dentin push-out bond strength and compressive strength under SBF storage. The addition of BG did not negatively affect the MTA maturation reaction; it increased the amount of hydroxyapatite during SBF maturation.


Sign in / Sign up

Export Citation Format

Share Document