scholarly journals A Methodology for Assessing the Favourability of Geopressured-Geothermal Systems in Sedimentary Basin Plays: A Case Study in Abruzzo (Italy)

Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-28 ◽  
Author(s):  
Alessandro Santilano ◽  
Eugenio Trumpy ◽  
Gianluca Gola ◽  
Assunta Donato ◽  
Davide Scrocca ◽  
...  

We exploit the concept of the geothermal favourability, widely used for hydrothermal and EGS systems, to present an innovative methodology for assessing geopressured-geothermal resources occurring in terrigenous units in sedimentary basin plays. Geopressured-geothermal systems are an unconventional resource for power trigeneration exploiting three forms of energy from hydrocarbons, hydrothermal fluids, and well-head overpressure. This paper is intended to be a practical analytical framework for the systematic integration of the relevant data required to assess geopressured-geothermal resources. For this purpose, innovative parameters were also implemented in the methodology. The final result is the favourability map for identifying prospective areas to be further investigated for the appraisal of the geopressured-geothermal potential. We applied our methodology to the foredeep-foreland domains of the Apennines thrust belt in the Abruzzo region (central Italy). We analysed hundreds of deep hydrocarbon wells in order to create 3D geological and thermo-fluid dynamic models at a regional scale as well as to obtain information on the pressure regimes and on the chemistry of the system. The final favourability map for the Abruzzo case study is a first attempt at ranking these kinds of unconventional geothermal resources in a region that has been historically explored and exploited mostly for hydrocarbons.

2020 ◽  
Author(s):  
Eugenio Trumpy ◽  
Gianluca Gola ◽  
Alessandro Santilano ◽  
Adele Manzella ◽  
Matteo Brambilla ◽  
...  

<p>Based on a joint analysis of geothermal indicators (e.g. temperature map at different depth, surface heat flux) and practical features (e.g. restricted areas, existing research lease), two promising areas in southern Tuscany were identified to perform a more detailed geothermal resource characterization. An area is located on the north-east of the Larderello-Travale geothermal field, and the other one is located on the west of the Mt. Amiata geothermal field.</p><p>A quantitative geothermal resources assessment was performed in the aforementioned areas of Tuscany by solving numerical thermo-fluid dynamic models and by computing the geothermal potential using the ‘ThermoGIS’ software, as further developed for the Italian case (Trumpy et al., 2016).</p><p>First of all, geological and geophysical data required for geological and thermo-fluid dynamic modelling were collected and organised. The geological data were used to build a 3D geological model of the two areas of interest suitable for numerical simulations. Static temperature data gathered from the Italian National Geothermal Database together with site-specific heat flow measurements were used to calibrate the simulated steady state temperature distribution.</p><p>The geothermal potential computed by integrating geological, thermal and petro-physical information implementing the volume method used in ThermoGIS provided estimates of the heat in place and the geothermal technical potential maps. The resulting technical potential in the area close to Larderello –Travale is 330 MW<sub>e</sub> and in the Mt. Amiata sector is 50MW<sub>e</sub>.</p><p>References</p><p>Trumpy E., Botteghi S., Caiozzi F., Donato A., Gola G., Montanari D., Pluymaekers M., Santilano A., Van Wees, J.D., Manzella A. Geothermal potential assessment for a low carbon strategy: a new systematic approach applied in southern Italy. Energy 103, 167-181, 2016.</p>


2019 ◽  
Vol 10 (1) ◽  
pp. 2257-2275 ◽  
Author(s):  
Roberto Montalti ◽  
Lorenzo Solari ◽  
Silvia Bianchini ◽  
Matteo Del Soldato ◽  
Federico Raspini ◽  
...  

2015 ◽  
Vol 8 (1) ◽  
pp. 73-76
Author(s):  
Yujiang He ◽  
Guiling Wang ◽  
Wenjing Lin ◽  
Wei Zhang

The geothermal resources in sedimentary basin are affected by many factors because the characteristic of geothermal reservoirs is very complex, so the heat storage capacities are hard to calculate. This paper took Dunhuang Basin as an example to analyze the geological structure, stratigraphic structure and the formation mechanism of geothermal water based on the formation characteristics of the geothermal resources. The analysis results showed the geothermal reservoir parameters, including the area, thickness, and temperature of the geothermal reservoir, and porosity, etc. Based on geothermal reservoir model, the conclusion was that the geothermal resource of Dunhuang Basin was 7.75E+16kJ. The results provided an advice for the exploitation of geothermal resources in sedimentary basins.


Author(s):  
Harmen F. Mijnlieff

Abstract The Netherlands has ample geothermal resources. During the last decade, development of these resources has picked up fast. In 2007 one geothermal system had been realised; to date (1 January 2019), 24 have been. Total geothermal heat production in 2018 was 3.7 PJ from 18 geothermal systems. The geothermal sources are located in the same reservoirs/aquifers in which the oil and gas accumulations are hosted: Cenozoic, Upper Jurassic – Lower Cretaceous, Triassic and Rotliegend reservoirs. Additionally, the yet unproven hydrocarbon play in the Lower Carboniferous (Dinantian) Limestones delivered geothermal heat in two geothermal systems. This is in contrast to the Upper Cretaceous and Upper Carboniferous with no producing geothermal systems but producing hydrocarbon fields. Similar to hydrocarbon development, developing the geothermal source relies on fluid flow through the reservoir. For geothermal application a transmissivity of 10 Dm is presently thought to be a minimum value for a standard doublet system. Regional mapping of the geothermal plays, with subsequent resource mapping, by TNO discloses the areas with favourable transmissivity within play areas for geothermal development. The website www.ThermoGis.nl provides the tool to evaluate the geothermal plays on a sub-regional scale. The Dutch geothermal source and resource portfolio can be classified using geothermal play classification of, for example, Moeck (2014). An appropriate adjective for play classification for the Dutch situation would be the predominant permeability type: matrix, karst, fracture or fault permeability. The Dutch geothermal play is a matrix-permeability dominated ‘Hot Sedimentary Aquifer’, ‘Hydrothermal’ or ‘Intra-cratonic Conductive’ play. The Dutch ‘Hot Sedimentary Aquifer’ play is subdivided according to the lithostratigraphical annotation of the reservoir. The main geothermal plays are the Delft Sandstone and Slochteren Sandstone plays.


Author(s):  
Cristina Sáez-Blázquez ◽  
Ignacio Martín-Nieto ◽  
Arturo Farfán-Martín ◽  
Diego González-Aguilera

Low enthalpy geothermal resources play an essential role in climate change mitigation. When ensuring the correct future operation of ground-source heat pump systems, an accurate design is mandatory. In this sense, different methodologies can be implemented. Although using sophisticated software constitutes the most optimal solution, its implementation is sometimes inviable in certain projects (the increase of the initial investment required is not justified in small plants). This work is focused on evaluating and comparing procedures used in the design of shallow geothermal systems. Thus, the research includes a simple method based on manual calculations, the Climasoft free application, Earth Energy Designer (EED) software, and the new geothermal tool GES-CAL developed by researchers from the TIDOP Research Group (University of Salamanca). The objective is to evaluate this new software and compare the results of all the detailed methodologies. This comparison derives from applying these tools in the calculation of the same case study (a single-family house placed in Ávila, Spain). Results show that the easiest methods involve oversized well-field schemas that also mean higher initial investments. Regarding GES-CAL, it is considered an accurate and valid alternative for the design of all heat exchanger configurations, especially for those installations placed in the region of Ávila. However, EED is recommended to calculate high-power geothermal systems that require an exhaustive analysis of the ground and the heat carrier fluid behaviour.


2020 ◽  
Vol 12 (11) ◽  
pp. 4554 ◽  
Author(s):  
Jolanda de Jong ◽  
Sven Stremke

While the transition to renewable energy becomes a main driver of landscape change, few publications discuss the historical transformation of landscapes for the development of energy—commonly referred to as energy landscape. The research reported in this paper investigates the evolution of energy landscapes in the Western Netherlands—a region shaped by peat extraction and dotted with windmills. Five periods have been identified, dominated by wood, peat, wind, fossil fuels, and modern renewables, respectively. During each period, the landscape coevolved with the new energy source hosting new energy infrastructure. The sequence of landscape transformations over the past 10 centuries in the Western Netherlands is illustrated by means of historical paintings, photographs and a series of five georeferenced maps. Our systematic analysis confirms the long-lasting and manifold interrelations between energy development and landscape transformation at the brink of another energy transition. This paper presents the first all-encompassing application of the analytical framework for the study of energy landscapes proposed earlier. The three main qualifications—substantive, spatial, and temporal—provided a clear framework for the systematic study of landscape transformations at the regional scale.


Author(s):  
Nguyen Thu Ha ◽  
Nguyen Thi Thanh Huyen

The retail market in Vietnam continues to grow with the entry of foreign retail brands and the strong rise of domestic businesses in expanding distribution networks and conquering consumer confidence. The appearance of more retail brands has created a fiercely competitive market. Based on the outcomes of previous research results on brand choice intention combined with a customer survey, the paper proposes an analytical framework and scales to examine the relationship of five elements including store image, price perception, risk perception, brand attitudes, brand awareness and retail brand choice intention with a case study of the Hanoi-based Circle K convenience store chain. These five elements are the precondition for retail businesses to develop their brands so as to attract customers.


2014 ◽  
Vol 29 (2) ◽  
pp. 322-331 ◽  
Author(s):  
Anders Karlström ◽  
Karin Eriksson

Abstract This is the first in a series of papers presenting the development of a comprehensive multiscale model with focus on fiber energy efficiency in thermo mechanical pulp processes. The fiber energy efficiency is related to the defibration and fibrillation work obtained when fibers and fiber bundles interact with the refining bars. The fiber energy efficiency differs from the total refining energy efficiency which includes the thermodynamical work as well. Extracting defibration and fibrillation work along the radius in the refining zone gives information valuable for fiber development studies.Models for this process must handle physical variables as well as machine specific parameters at different scales. To span the material and energy balances, spatial measurements from the refining zone must be available. In this paper, measurements of temperature profile and plate gaps from a full-scale CD-refiner are considered as model inputs together with a number of process variables. This enables the distributed consistency in the refining zone as well as the split of the total work between the flat zone and the CD-zone to be derived. As the temperature profile and the plate gap are available in the flat zone and the CD-zone at different process conditions it is also shown that the distributed pulp dynamic viscosity can be obtained. This is normally unknown in refining processes but certainly useful for all fluid dynamic models describing the bar-to-fiber interactions. Finally, it is shown that the inclusion of the machine parameters will be vital to get good estimates of the refining conditions and especially the split between the thermodynamical work and the defibration/fibrillation work.


Food Control ◽  
2021 ◽  
Vol 125 ◽  
pp. 107964
Author(s):  
Daniele Castiglione ◽  
Lisa Guardone ◽  
Francesca Susini ◽  
Federica Alimonti ◽  
Valeria Paternoster ◽  
...  

2021 ◽  
pp. 073490412199344
Author(s):  
Wolfram Jahn ◽  
Frane Sazunic ◽  
Carlos Sing-Long

Synthesising data from fire scenarios using fire simulations requires iterative running of these simulations. For real-time synthesising, faster-than-real-time simulations are thus necessary. In this article, different model types are assessed according to their complexity to determine the trade-off between the accuracy of the output and the required computing time. A threshold grid size for real-time computational fluid dynamic simulations is identified, and the implications of simplifying existing field fire models by turning off sub-models are assessed. In addition, a temperature correction for two zone models based on the conservation of energy of the hot layer is introduced, to account for spatial variations of temperature in the near field of the fire. The main conclusions are that real-time fire simulations with spatial resolution are possible and that it is not necessary to solve all fine-scale physics to reproduce temperature measurements accurately. There remains, however, a gap in performance between computational fluid dynamic models and zone models that must be explored to achieve faster-than-real-time fire simulations.


Sign in / Sign up

Export Citation Format

Share Document