scholarly journals Experimental Study on Dynamic Performance of Self-Compacting Lightweight Aggregate Concrete under Compression

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Furong Li ◽  
Zhenpeng Yu ◽  
Yanli Hu

In order to study the dynamic characteristics of the self-compacting lightweight aggregate concrete (SCLC) under uniaxial compression, 10 different strain rates (10−5–10−1/s) were set up to examine the uniaxial compressive dynamic performance of ordinary concrete, lightweight aggregate concrete, and SCLC, respectively. The failure modes and stress-strain curves of the samples under different loading conditions were obtained through experiment. The dynamic characteristics of the SCLC were analyzed by comparing the failure modes and testing data under different loading conditions. The following conclusions are drawn: the failure modes of the SCLC belong to destruction of shale ceramsite, which are similar to that of the lightweight aggregate concrete. The peak stress and elastic modulus of the self-compacting lightweight aggregate gradually increase with the increase of the loading strain rate, but the extent of increase of the peak stress is lower than that of the ordinary concrete and lightweight aggregate concrete. Affected by the loading strain rate and the random coupling of concrete, the peak strain of the self-compacting lightweight aggregate shows a relatively discrete changing trend. At the same time, the compressive dynamic performance of the SCLC was analyzed from the perspective of failure mechanism with a quantitative point of view.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zhiqing Zhao

For the purpose of studying the dynamic properties of lightweight aggregate concrete, dynamic performance tests under uniaxial compression were conducted by considering 10 different strain rates ranging from 10−5/s to 10−1/s, from which the stress-strain curves under various compressive loads were obtained. From the stress-strain curves, parameters including peak stress, peak strain, and elastic modulus of lightweight aggregate concrete, as well as the concrete failure mode, were determined and examined. By reviewing the relevant literature on ordinary concrete, the dynamic properties of lightweight aggregate concrete were analyzed accordingly. Meanwhile, by applying the dynamic elastoplastic damage constitutive model, the effect of dynamic rate on lightweight aggregate concrete was calculated. The experimental results showed that the damage mode of lightweight aggregate concrete under the static and dynamic strain rates belonged to shear failure, which is different from that of ordinary concrete (binding material failure). On the other hand, it was also found that the peak stress and elastic modulus of lightweight aggregate concrete could be increased by 54.48% and 28.75%, respectively, with the increase of strain rate, suggesting that the loading strain rate has a stronger influence on lightweight aggregate concrete than on ordinary concrete. Based on the experimental data, both the peak stress and nondimensionalized elastic modulus are in linear relationship with the logarithm of the nondimensionalized strain rate. Moreover, the established constitutive model had been verified as an effective and reliable tool for simulating the dynamic rate effect of lightweight aggregate concrete.


2010 ◽  
Vol 163-167 ◽  
pp. 1762-1767 ◽  
Author(s):  
Xiang Liu ◽  
Jiang Tao Kong

According to the contrast test of LC30, LC40 lightweight aggregate concrete and C30, C40 common concrete , the text researched the mechanical property of lightweight aggregate concrete and ordinary concrete in the same strength grade and obtained the regularity of stress-strain curve of lightweight aggregate concrete in different strength grade. Then we contrasted the experimental results and planning model, analysed the difference, and suggested that the standards should improve the descent stage of the stress-strain curve of lightweight aggregate concrete combined with correlative experiments data, and give the equation of the descent stage of stress-strain curves. Concrete material in axial compression is the basic physical mechanical performance of concrete material, and is the main basis for researching bearing capacity and deformation of concrete construction. The stress-strain relationship is all-around macroscopic reaction of basal compressive property . There have been many experiments work about the stress-strain relationship of lightweight aggregate concrete at home and abroad , and found the peak strain of lightweight aggregate concrete is higher than that of ordinary concrete in the context of same peak stress .In this paper, on the basis of experimental investigations of lightweight aggregate concrete , aim at the stress-strain relationship ,we have take comparison experiment about LC30,LC40 lightweight aggregate concrete and C30,C40 ordinary concrete , and sort out stress-strain curve under the condition of the shaft center being compressed, so get the average tress-strain curve of LC30,LC40 lightweight aggregate concrete , and analyse the curve.


2012 ◽  
Vol 594-597 ◽  
pp. 721-724
Author(s):  
Yan Kun Zhang ◽  
Yan Xiao Han ◽  
Ze Zao Song

At present, there are much more researches on the ordinary concrete composite slab, and that on the lightweight aggregate concrete composite slab are relatively less. In this paper, the shear-bond behavior of lightweight aggregate concrete composite slab, with the profiled steel sheet YX-76-344-688, which is commonly used in China is studied. Base on experiments, the cracks developing process and its regularities of distribution, the bonding and slipping between profiled sheeting and concrete, the relationship of load and mid-span deflection, ultimate bearing capacity etc. are studied.


2021 ◽  
pp. 105678952110441
Author(s):  
Wenxuan Yu ◽  
Liu Jin ◽  
Xi Liu ◽  
Xiuli Du

A comprehensive finite element analysis at the mesoscopic level has been conducted into the complex topic of size effect coupling dynamic strain-rates. Taking the lightweight aggregate concrete (LWAC) dumbbell-shaped samples as the object of numerical investigation, the influence of strain-rate (with the range of 10−5/s ∼ 100/s) on direct-tensile failure of LWAC (including different lightweight aggregate volume fractions [Formula: see text] = 40%, 30% and 20%) was discussed. Subsequently, the structure size of LWAC samples was further expanded (width W = 100, 200 and 300 mm) and the dynamic size effect on direct-tensile strength was investigated. Numerical results show that both the direct-tensile strength and its corresponding size effect of LWAC exhibit a strain-rate dependent behaviour. The increasing strain-rate can gradually weaken the size effect of LWAC and direct-tensile strength would be independent to the structure size as the strain-rate reaches the critical strain-rate. The increasing lightweight aggregate volume fraction can reduce direct-tensile strength. Furthermore, a dynamic size effect model establishing the direct link between the strain-rate effect and size effect was proposed, which can quantitatively predict the dynamic direct-tensile strength of LWAC.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4064 ◽  
Author(s):  
Jing Lv ◽  
Tianhua Zhou ◽  
Qiang Du ◽  
Kunlun Li ◽  
Kai Sun

The recycling of waste tires in lightweight aggregate concrete (LC) would achieve huge environmental and societal benefits, but the effects of rubber particles on the partial properties of LC are not clear (e.g., the stress–strain relationship). In this paper, uniaxial compressive experiments were conducted to evaluate the stress–strain relationship of self-compacting rubber lightweight aggregate concrete (SCRLC). Rubber particles were used to replace sand by volume, and substitution percentages of 0%, 10%, 20%, 30%, 40%, and 50% were set as influence factors. Experimental results indicate that with increased rubber particles substitution percentage, the cubic compressive strength and axial compressive strength of SCRLC decreased, while the failure modes of SCRLC prism specimens gradually changed from brittle to ductile failure. As the rubber particles substitution percentage increased from 0% to 50%, the peak strain of SCRLC increased whereas peak stress, elastic modulus, and peak secant modulus of SCRLC deceased, the descending stage of stress–strain curves became softer. The rubber particles substitution percentage of 30% was the critical point at which an obvious change in the properties of SCRLC occurred. Based on the data collected from experimental studies, a predictive model for SCRLC was established and a further prediction of the SCRLC stress–strain relationship was given.


2021 ◽  
Vol 272 ◽  
pp. 02021
Author(s):  
Hao Lin ◽  
Liu Lei ◽  
Li Jian

In order to study the mechanical properties of the stud connectors in lightweight aggregate concrete (LWAC), the finite element software ABAQUS was used to establish the push test models of ordinary concrete and LWAC, respectively. Through parameter analysis of 21 models, the influence of different parameters on the shear performance of LWAC stud connector was studied. Among them, concrete strength, stud diameter and stud strength have strong effects. Compared with stud connector in ordinary concrete, the LWAC stud connector enters the elastoplastic working stage earlier, the ultimate slip is slightly larger, the ductility is better, and the shear capacity is about 11% lower. Regression analysis was performed on the finite element calculation results, and the method for shear bearing capacity calculation of the stud connectors in LWAC is given.


2014 ◽  
Vol 919-921 ◽  
pp. 1983-1989 ◽  
Author(s):  
Dan Wang ◽  
Zhi Kun Guo ◽  
Fei Shao ◽  
Wan Xiang Chen

The impact compression tests on HPP hybrid fibers reinforced lightweight aggregate concrete were performed with 100mm SHPB equipment. The dynamic mechanical properties and variation of HPP hybrid fibers reinforced lightweight aggregate concrete under different strain rates and loading methods were systematically studied. HPP hybrid fibers reinforced lightweight aggregate concrete is of the property of strain rate effects under impact loads as ordinary concrete. The dynamic strength and peak strain of it increased with the increase of strain rate. During multiple-impact compression tests, the specimens were able to bear multiple impacts before damage after cracks were produced. It is clear that HPP hybrid fibers reinforced lightweight aggregate concrete is an outstanding material for protective engineering to resist repetitive impacts.


Sign in / Sign up

Export Citation Format

Share Document